
David A Eisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746953/publications.pdf Version: 2024-02-01

DAVID & FISNED

#	Article	IF	CITATIONS
1	Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research, 2017, 121, 181-195.	4.5	526
2	The steady state TTX-sensitive (?window?) sodium current in cardiac Purkinje fibres. Pflugers Archiv European Journal of Physiology, 1979, 379, 137-142.	2.8	440
3	Integrative Analysis of Calcium Cycling in Cardiac Muscle. Circulation Research, 2000, 87, 1087-1094.	4.5	287
4	Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research, 2004, 94, 650-656.	4.5	279
5	Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature, 1983, 304, 735-738.	27.8	270
6	Sarcoplasmic Reticulum Ca 2+ and Heart Failure. Circulation Research, 2003, 93, 487-490.	4.5	267
7	Na-Ca exchange: stoichiometry and electrogenicity. American Journal of Physiology - Cell Physiology, 1985, 248, C189-C202.	4.6	241
8	Evolution of calcium homeostasis: From birth of the first cell to an omnipresent signalling system. Cell Calcium, 2007, 42, 345-350.	2.4	239
9	Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature, 1983, 301, 522-524.	27.8	218
10	The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovascular Research, 2007, 77, 285-292.	3.8	196
11	An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1993, 423-423, 158-160.	2.8	191
12	The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovascular Research, 1998, 38, 589-604.	3.8	188
13	The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells Journal of Physiology, 1989, 411, 393-418.	2.9	186
14	Measurement of sarcoplasmic reticulum Ca2+content and sarcolemmal Ca2+fluxes in isolated rat ventricular myocytes during spontaneous Ca2+release. Journal of Physiology, 1997, 501, 3-16.	2.9	182
15	Increasing Ryanodine Receptor Open Probability Alone Does Not Produce Arrhythmogenic Calcium Waves. Circulation Research, 2007, 100, 105-111.	4.5	173
16	Regulation of Intracellular and Mitochondrial Sodium in Health and Disease. Circulation Research, 2009, 104, 292-303.	4.5	165
17	Inotropic and arrhythmogenic effects of potassiumâ€depleted solutions on mammalian cardiac muscle Journal of Physiology, 1979, 294, 255-277.	2.9	162
18	The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovascular Research, 1993, 27, 1826-1830.	3.8	158

#	Article	IF	CITATIONS
19	Modulation of CICR has no maintained effect on systolic Ca 2+ : simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca 2+ fluxes in rat ventricular myocytes. Journal of Physiology, 2000, 522, 259-270.	2.9	156
20	Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. Journal of Physiology, 1980, 303, 441-474.	2.9	154
21	The dependence of sodium pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres Journal of Physiology, 1981, 317, 163-187.	2.9	149
22	The role of [Ca2+]i and [Ca2+] sensitization in the caffeine contracture of rat myocytes: measurement of [Ca2+]i and [caffeine]i Journal of Physiology, 1990, 425, 55-70.	2.9	148
23	Depressed Ryanodine Receptor Activity Increases Variability and Duration of the Systolic Ca 2+ Transient in Rat Ventricular Myocytes. Circulation Research, 2002, 91, 585-593.	4.5	148
24	Characterization of an Extensive Transverse Tubular Network in Sheep Atrial Myocytes and its Depletion in Heart Failure. Circulation: Heart Failure, 2009, 2, 482-489.	3.9	144
25	Transverse tubules are a common feature in large mammalian atrial myocytes including human. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1996-H2005.	3.2	142
26	The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fibre Journal of Physiology, 1983, 335, 723-743.	2.9	127
27	Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle Journal of Physiology, 1984, 352, 113-128.	2.9	124
28	Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes Journal of Physiology, 1992, 448, 493-509.	2.9	124
29	A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1999, 437, 501.	2.8	123
30	The quantitative relationship between twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres Journal of Physiology, 1984, 355, 251-266.	2.9	120
31	Coordinated Control of Cell Ca ²⁺ Loading and Triggered Release From the Sarcoplasmic Reticulum Underlies the Rapid Inotropic Response to Increased L-Type Ca ²⁺ Current. Circulation Research, 2001, 88, 195-201.	4.5	116
32	Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones Journal of Physiology, 1990, 424, 411-426.	2.9	112
33	Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes Journal of Physiology, 1995, 488, 577-586.	2.9	112
34	Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Frontiers in Physiology, 2018, 9, 1380.	2.8	112
35	Dependence of Cardiac Transverse Tubules on the BAR Domain Protein Amphiphysin II (BIN-1). Circulation Research, 2014, 115, 986-996.	4.5	109
36	The relationship between intracellular calcium and contraction in calcium-overloaded ferret papillary muscles Journal of Physiology, 1985, 364, 169-182.	2.9	102

#	Article	IF	CITATIONS
37	The role of the sodium pump in the effects of potassiumâ€depleted solutions on mammalian cardiac muscle. Journal of Physiology, 1979, 294, 279-301.	2.9	100
38	A mechanism for the effects of caffeine on Ca2+ release during diastole and systole in isolated rat ventricular myocytes Journal of Physiology, 1990, 430, 519-536.	2.9	99
39	Enhanced Ca ²⁺ Current and Decreased Ca ²⁺ Efflux Restore Sarcoplasmic Reticulum Ca ²⁺ Content After Depletion. Circulation Research, 1997, 81, 477-484.	4.5	99
40	Calcium flux balance in the heart. Journal of Molecular and Cellular Cardiology, 2013, 58, 110-117.	1.9	97
41	The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle Journal of Physiology, 1983, 345, 391-407.	2.9	96
42	The Control of Diastolic Calcium in the Heart. Circulation Research, 2020, 126, 395-412.	4.5	94
43	Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes Journal of Physiology, 1995, 486, 581-591.	2.9	92
44	Reducing Ryanodine Receptor Open Probability as a Means to Abolish Spontaneous Ca 2+ Release and Increase Ca 2+ Transient Amplitude in Adult Ventricular Myocytes. Circulation Research, 2006, 98, 1299-1305.	4.5	90
45	In the RyR2 ^{R4496C} Mouse Model of CPVT, β-Adrenergic Stimulation Induces Ca Waves by Increasing SR Ca Content and Not by Decreasing the Threshold for Ca Waves. Circulation Research, 2010, 107, 1483-1489.	4.5	90
46	The effects of low concentrations of caffeine on spontaneous Ca release in isolated rat ventricular myocytes. Cell Calcium, 2000, 28, 269-276.	2.4	89
47	The effects of heart rate on the action potential of guineaâ€pig and human ventricular muscle Journal of Physiology, 1981, 313, 439-461.	2.9	88
48	The effect of tetracaine on supontaneous Ca2+release and sarcoplasmic reticulum calcium content in rat ventricular myocytes. Journal of Physiology, 1997, 502, 471-479.	2.9	88
49	Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca 2+] in rat uterine smooth muscle cells. Journal of Physiology, 2001, 531, 707-713.	2.9	88
50	The control of sarcoplasmic reticulum Ca content in cardiac muscle. Cell Calcium, 2005, 38, 391-396.	2.4	86
51	Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body Journal of Physiology, 1989, 416, 421-434.	2.9	83
52	Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts Journal of Physiology, 1992, 454, 467-490.	2.9	83
53	What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis?. Journal of Molecular and Cellular Cardiology, 2009, 46, 474-481.	1.9	83
54	Voltage clamp and tracer flux data: effects of a restricted extra-cellular space. Quarterly Reviews of Biophysics, 1979, 12, 213-261.	5.7	82

#	Article	IF	CITATIONS
55	Diastolic Spontaneous Calcium Release From the Sarcoplasmic Reticulum Increases Beat-to-Beat Variability of Repolarization in Canine Ventricular Myocytes After β-Adrenergic Stimulation. Circulation Research, 2013, 112, 246-256.	4.5	82
56	The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. Journal of Physiology, 1999, 515, 109-118.	2.9	81
57	Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium, 2007, 42, 503-512.	2.4	80
58	Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers Journal of General Physiology, 1987, 89, 1015-1032.	1.9	76
59	A novel method for absolute calibration of intracellular pH indicators. Pflugers Archiv European Journal of Physiology, 1989, 413, 553-558.	2.8	76
60	Properties of voltage-activated [Ca2+]itransients in single smooth muscle cells isolated from pregnant rat uterus. Journal of Physiology, 1998, 511, 803-811.	2.9	76
61	The effects of rubidium ions and membrane potentials on the intracellular sodium activity of sheep Purkinje fibres Journal of Physiology, 1981, 317, 189-205.	2.9	75
62	The effect of tetracaine on stimulated contractions, sarcoplasmic reticulum Ca2+content and membrane current in isolated rat ventricular myocytes. Journal of Physiology, 1998, 507, 759-769.	2.9	74
63	The effect of acidosis on systolic Ca 2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. Journal of Physiology, 2000, 529, 661-668.	2.9	73
64	Thick slurry bevelling. Pflugers Archiv European Journal of Physiology, 1979, 381, 287-288.	2.8	71
65	The dependence on heart rate of the human ventricular action potential duration. Cardiovascular Research, 1982, 16, 547-551.	3.8	71
66	The role of intracellular sodium activity in the antiâ€arrhythmic action of local anaesthetics in sheep Purkinje fibres Journal of Physiology, 1983, 340, 239-257.	2.9	70
67	Factors influencing free intracellular calcium concentration in quiescent ferret ventricular muscle Journal of Physiology, 1984, 350, 615-630.	2.9	70
68	Calcium-induced calcium release activates contraction in intact cardiac cells. Pflugers Archiv European Journal of Physiology, 1989, 413, 676-678.	2.8	68
69	Regulation of systolic [Ca ²⁺] _i and cellular Ca ²⁺ flux balance in rat ventricular myocytes by SR Ca ²⁺ , Lâ€type Ca ²⁺ current and diastolic [Ca ²⁺] _i . Journal of Physiology, 2007, 585, 579-592.	2.9	68
70	Calcium Buffering in the Heart in Health and Disease. Circulation, 2019, 139, 2358-2371.	1.6	68
71	Mechanisms underlying enhanced cardiac excitation contraction coupling observed in the senescent sheep myocardium. Journal of Molecular and Cellular Cardiology, 2004, 37, 1171-81.	1.9	67
72	The role of the sarcoplasmic reticulum as a Ca2+sink in rat uterine smooth muscle cells. Journal of Physiology, 1999, 520, 153-163.	2.9	64

#	Article	IF	CITATIONS
73	Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovascular Research, 2007, 77, 256-264.	3.8	64
74	Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles Journal of General Physiology, 1988, 92, 351-368.	1.9	59
75	How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone. Cell Calcium, 2013, 54, 163-174.	2.4	59
76	The effects of inhibitors of sarcoplasmic reticulum function on the systolic Ca2+ transient in rat ventricular myocytes Journal of Physiology, 1993, 468, 35-52.	2.9	58
77	From the Ryanodine Receptor to Cardiac Arrhythmias. Circulation Journal, 2009, 73, 1561-1567.	1.6	57
78	Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovascular Research, 2013, 98, 192-203.	3.8	56
79	A study of intracellular calcium oscillations in sheep cardiac Purkinje fibres measured at the single cell level Journal of Physiology, 1986, 372, 539-556.	2.9	54
80	Propagating calcium waves initiated by local caffeine application in rat ventricular myocytes Journal of Physiology, 1995, 489, 319-326.	2.9	53
81	Na/Ca Exchange: Regulator of Intracellular Calcium and Source of Arrhythmias in the Heart. Annals of the New York Academy of Sciences, 2007, 1099, 315-325.	3.8	52
82	Interplay between SERCA and sarcolemmal Ca2+efflux pathways controls spontaneous release of Ca2+from the sarcoplasmic reticulum in rat ventricular myocytes. Journal of Physiology, 2004, 559, 121-128.	2.9	51
83	Stability and instability of regulation of intracellular calcium. Experimental Physiology, 2005, 90, 3-12.	2.0	51
84	Metabolic consequences of increasing intracellular calcium and force production in perfused ferret hearts Journal of Physiology, 1986, 376, 121-141.	2.9	50
85	Calcium in the heart: from physiology to disease. Experimental Physiology, 2014, 99, 1273-1282.	2.0	50
86	The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts Journal of Physiology, 1981, 319, 403-418.	2.9	49
87	The relationship between sodium pump activity and twitch tension in cardiac Purkinje fibres. Journal of Physiology, 1980, 303, 475-494.	2.9	48
88	Stimulation of Ca-induced Ca release only transiently increases the systolic Ca transient: measurements of Ca fluxes and sarcoplasmic reticulum Ca. Cardiovascular Research, 1998, 37, 710-717.	3.8	48
89	Impaired βâ€adrenergic responsiveness accentuates dysfunctional excitation–contraction coupling in an ovine model of tachypacingâ€induced heart failure. Journal of Physiology, 2011, 589, 1367-1382.	2.9	47
90	Changes of SERCA activity have only modest effects on sarcoplasmic reticulum Ca ²⁺ content in rat ventricular myocytes. Journal of Physiology, 2011, 589, 4723-4729.	2.9	47

#	Article	IF	CITATIONS
91	The effects of ryanodine on calcium-overloaded sheep cardiac Purkinje fibers Circulation Research, 1985, 56, 452-456.	4.5	46
92	Local activation of contraction in isolated rat ventricular myocytes. American Journal of Physiology - Cell Physiology, 1990, 258, C1165-C1168.	4.6	46
93	A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium, 2003, 34, 27-33.	2.4	46
94	Reduced SERCA2 abundance decreases the propensity for Ca2+ wave development in ventricular myocytes. Cardiovascular Research, 2010, 86, 63-71.	3.8	46
95	Reproducibility of science: Fraud, impact factors and carelessness. Journal of Molecular and Cellular Cardiology, 2018, 114, 364-368.	1.9	46
96	Pseudoreplication in physiology: More means less. Journal of General Physiology, 2021, 153, .	1.9	46
97	Factors affecting the propagation of locally activated systolic Ca transients in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1993, 425, 181-183.	2.8	45
98	The mechanism and significance of the slow changes of ventricular action potential duration following a change of heart rate. Experimental Physiology, 2009, 94, 520-528.	2.0	45
99	Altered Cardiac Sarcoplasmic Reticulum Function of Intact Myocytes of Rat Ventricle During Metabolic Inhibition. Circulation Research, 2001, 88, 181-187.	4.5	44
100	Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Frontiers in Pharmacology, 2020, 11, 72.	3.5	44
101	Sodium pump: Birthday present for digitalis. Nature, 1985, 316, 674-675.	27.8	42
102	Effects of metabolic inhibition and changes of intracellular pH on potassium permeability and contraction of rat uterus Journal of Physiology, 1993, 465, 43-56.	2.9	42
103	Ca-activated chloride current and Na-Ca exchange have different timecourses during sarcoplasmic reticulum Ca release in ferret ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1998, 435, 743-745.	2.8	42
104	Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current. Journal of Molecular and Cellular Cardiology, 2015, 79, 169-179.	1.9	42
105	Effects of caffeine, tetracaine, and ryanodine on calcium-dependent oscillations in sheep cardiac Purkinje fibers Journal of General Physiology, 1985, 86, 877-889.	1.9	40
106	Cardiac Na-Ca Exchange and pH. Annals of the New York Academy of Sciences, 1996, 779, 182-198.	3.8	40
107	Effects of mefloquine on cardiac contractility and electrical activity in vivo , in isolated cardiac preparations, and in single ventricular myocytes. British Journal of Pharmacology, 2000, 129, 323-330.	5.4	40
108	Alternans of intracellular calcium: Mechanism and significance. Heart Rhythm, 2006, 3, 743-745.	0.7	40

#	Article	IF	CITATIONS
109	The effects of membrane potential, SR Ca ²⁺ content and RyR responsiveness on systolic Ca ²⁺ alternans in rat ventricular myocytes. Journal of Physiology, 2009, 587, 1283-1292.	2.9	40
110	The contribution of intracellular acidosis to the decline of developed pressure in ferret hearts exposed to cyanide Journal of Physiology, 1987, 391, 99-108.	2.9	39
111	The mechanism of the increase of tonic tension produced by caffeine in sheep cardiac Purkinje fibres Journal of Physiology, 1985, 364, 313-326.	2.9	38
112	The effects of thapsigargin on [Ca2+]i in isolated rat mesenteric artery vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 1992, 420, 115-117.	2.8	38
113	Alternans of cardiac calcium cycling in a cluster of ryanodine receptors: a simulation study. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H598-H609.	3.2	38
114	Sarcoplasmic Reticulum Ca-ATPase and Heart Failure 20 Years Later. Circulation Research, 2013, 113, 958-961.	4.5	38
115	Do calcium-activated potassium channels exist in the heart?. Cell Calcium, 1983, 4, 371-386.	2.4	37
116	The Contribution of Na-Ca Exchange to Relaxation in Mammalian Cardiac Muscle. Annals of the New York Academy of Sciences, 1991, 639, 444-452.	3.8	37
117	Carboxyeosin decreases the rate of decay of the [Ca 2+] i transient in uterine smooth muscle cells isolated from pregnant rats. Pflugers Archiv European Journal of Physiology, 1998, 437, 158-160.	2.8	37
118	The effects of sodium pump activity on the slow inward current in sheep cardiac Purkinje fibres. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1982, 214, 249-262.	1.8	36
119	A measurable reduction of s.r. Ca content follows spontaneous Ca release in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1997, 434, 852-854.	2.8	36
120	The Effects of Exogenous Calcium Buffers on the Systolic Calcium Transient in Rat Ventricular Myocytes. Biophysical Journal, 2001, 80, 1915-1925.	0.5	36
121	A functional role for transverse (t-) tubules in the atria. Journal of Molecular and Cellular Cardiology, 2013, 58, 84-91.	1.9	36
122	Mechanisms by which Cytoplasmic Calcium Wave Propagation and Alternans Are Generated in Cardiac Atrial Myocytes Lacking T-Tubules—Insights from a Simulation Study. Biophysical Journal, 2012, 102, 1471-1482.	0.5	35
123	Control of intracellular ionized calcium concentration by sarcolemmal and intracellular mechanisms. Journal of Molecular and Cellular Cardiology, 1984, 16, 137-146.	1.9	34
124	Changes of intracellular [Ca2+] during refilling of sarcoplasmic reticulum in rat ventricular and vascular smooth muscle Journal of Physiology, 1993, 465, 21-41.	2.9	34
125	The effects of inhibition of the sarcolemmal Ca-ATPase on systolic calcium fluxes and intracellular calcium concentration in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1999, 437, 966-971.	2.8	34
126	Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Scientific Reports, 2019, 9, 6801.	3.3	34

#	Article	IF	CITATIONS
127	The role of intracellular Ca buffers in determining the shape of the systolic Ca transient in cardiac ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2001, 442, 96-100.	2.8	33
128	Physiological and pathological modulation of ryanodine receptor function in cardiac muscle. Cell Calcium, 2004, 35, 583-589.	2.4	33
129	Balanced changes in Ca buffering by SERCA and troponin contribute to Ca handling during β-adrenergic stimulation in cardiac myocytes. Cardiovascular Research, 2014, 104, 347-354.	3.8	33
130	Factors controlling changes in intracellular Ca2+ concentration produced by noradrenaline in rat mesenteric artery smooth muscle cells Journal of Physiology, 1995, 482, 247-258.	2.9	32
131	Integrative analysis of calcium signalling in cardiac muscle. Frontiers in Bioscience - Landmark, 2002, 7, d843.	3.0	32
132	The influence of chemical agents on the level of ionized [Ca2+] in squid axons Journal of General Physiology, 1985, 85, 789-804.	1.9	31
133	2,3-Butanedione monoxime (BDM) decreases sarcoplasmic reticulum Ca content by stimulating Ca release in isolated rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 776-781.	2.8	31
134	Variability of Spontaneous Ca ²⁺ Release Between Different Rat Ventricular Myocytes Is Correlated With Na ⁺ -Ca ²⁺ Exchange and [Na ⁺] _i . Circulation Research, 1996, 78, 857-862.	4.5	30
135	How Structure, Ca Signals, and Cellular Communications Underlie Function in Precapillary Arterioles. Circulation Research, 2009, 105, 803-810.	4.5	29
136	Changes of pH affect calcium currents but not outward potassium currents in rat myometrial cells. Pflugers Archiv European Journal of Physiology, 1995, 431, 135-137.	2.8	28
137	The role of the sarcolemmal Ca2 ⁺ â€ATPase in the pH transients associated with contraction in rat smooth muscle. Journal of Physiology, 1997, 505, 329-336.	2.9	28
138	Something old, something new: Changing views on the cellular mechanisms of heart failure. Cardiovascular Research, 2005, 68, 167-174.	3.8	28
139	The Wellcome prize lecture. Intracellular sodium in cardiac muscle: effects on contraction. Experimental Physiology, 1990, 75, 437-457.	2.0	27
140	The sarcolemmal mechanisms involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflugers Archiv European Journal of Physiology, 1996, 432, 961-969.	2.8	27
141	Systolic [Ca ²⁺] _i regulates diastolic levels in rat ventricular myocytes. Journal of Physiology, 2017, 595, 5545-5555.	2.9	26
142	Ups and downs of calcium in the heart. Journal of Physiology, 2018, 596, 19-30.	2.9	26
143	Disruption of Pressure-Induced Ca ²⁺ Spark Vasoregulation of Resistance Arteries, Rather Than Endothelial Dysfunction, Underlies Obesity-Related Hypertension. Hypertension, 2020, 75, 539-548.	2.7	26
144	Ca2+ wave probability is determined by the balance between SERCA2-dependent Ca2+ reuptake and threshold SR Ca2+ content. Cardiovascular Research, 2011, 90, 503-512.	3.8	25

#	Article	IF	CITATIONS
145	Sodium Calcium Exchange in the Heart. Circulation Research, 2004, 95, 549-551.	4.5	24
146	The effects of hydrogen peroxide on intracellular calcium handling and contractility in the rat ventricular myocyte. Cell Calcium, 2010, 48, 341-351.	2.4	24
147	The effects of membrane potential on active and passive sodium transport in Xenopus oocytes Journal of Physiology, 1987, 385, 643-659.	2.9	23
148	Measurement of calcium entry and exit in quiescent rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2000, 440, 600-608.	2.8	23
149	Direct measurements of SR free Ca reveal the mechanism underlying the transient effects of RyR potentiation under physiological conditions. Cardiovascular Research, 2014, 103, 554-563.	3.8	23
150	Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart Journal of Physiology, 1993, 472, 11-22.	2.9	21
151	Heart Failure and the Ryanodine Receptor. Circulation Research, 2002, 91, 979-981.	4.5	21
152	Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak. Journal of Physiology, 2016, 594, 611-623.	2.9	21
153	Caffeine and tetracaine abolish the slow inward calcium current in sheep cardiac Purkinje fibres [proceedings]. Journal of Physiology, 1979, 293, 76P-77P.	2.9	21
154	A mechanism distinct from the L-type Ca current or Na–Ca exchange contributes to Ca entry in rat ventricular myocytes. Cell Calcium, 2006, 39, 417-423.	2.4	20
155	Simultaneous Measurement of Intracellular pH, Calcium, and Tension in Rat Mesenteric Vessels: Effects of Extracellular pH. Biochemical and Biophysical Research Communications, 1996, 222, 537-540.	2.1	19
156	Inhibition of the sodium pump by inorganic phosphate in resealed red cell ghosts Journal of Physiology, 1982, 326, 1-10.	2.9	18
157	Comparison of the effects of caffeine and other methylxanthines on [Ca ²⁺] _i in rat ventricular myocytes. British Journal of Pharmacology, 1994, 111, 455-458.	5.4	17
158	Life, Sudden Death, and Intracellular Calcium. Circulation Research, 2006, 99, 223-224.	4.5	17
159	Effects of membrane potential on intracellular calcium concentration in sheep Purkinje fibres in sodiumâ€free solutions Journal of Physiology, 1986, 381, 193-203.	2.9	16
160	The effects of changing intracellular pH on calcium and potassium currents in smooth muscle cells from the guinea-pig ureter. Pflugers Archiv European Journal of Physiology, 1998, 435, 518-522.	2.8	15
161	Low sodium inotropy is accompanied by diastolic Ca 2+ gain and systolic loss in isolated guineaâ€pig ventricular myocytes. Journal of Physiology, 2001, 530, 487-495.	2.9	14
162	Increased Vulnerability to Atrial Fibrillation Is Associated With Increased Susceptibility to Alternans in Old Sheep. Journal of the American Heart Association, 2018, 7, e009972.	3.7	14

#	Article	IF	CITATIONS
163	A comparison of measurements of intracellular Ca by Ca electrode and optical indicators. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 805, 393-404.	4.1	13
164	Strophanthidin-induced gain of Ca 2+ occurs during diastole and not systole in guinea-pig ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1999, 437, 731-736.	2.8	13
165	No Role for the Ryanodine Receptor in Regulating Cardiac Contraction?. Physiology, 2000, 15, 275-279.	3.1	13
166	Normal and pathological excitation–contraction coupling in the heart – an overview. Journal of Physiology, 2003, 546, 3-4.	2.9	13
167	No role for a voltage sensitive release mechanism in cardiac muscle. Journal of Molecular and Cellular Cardiology, 2003, 35, 145-151.	1.9	13
168	Screening and prevention in Swiss primary care: a systematic review. International Journal of General Medicine, 2011, 4, 853.	1.8	13
169	Increased Ca buffering underpins remodelling of Ca ²⁺ handling in old sheep atrial myocytes. Journal of Physiology, 2017, 595, 6263-6279.	2.9	13
170	Active transport and inotropic state in guinea pig left atrium Circulation Research, 1983, 53, 834-836.	4.5	12
171	Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts Journal of Physiology, 1983, 335, 495-506.	2.9	12
172	THE EFFECTS OF NICKEL ON CONTRACTION AND MEMBRANE CURRENT IN ISOLATED RAT MYOCYTES. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 1017-1020.	1.0	11
173	Ion pumping in biological membranes. Contemporary Physics, 1985, 26, 3-21.	1.8	10
174	The Role of Intracellular Ca Ions in the Therapeutic and Toxic Effects of Cardiac Glycosides and Catecholamines. Journal of Cardiovascular Pharmacology, 1986, 8, S2-S9.	1.9	10
175	The effects of lactic acid production on contraction and intracellular pH during hypoxia in cardiac muscle. Basic Research in Cardiology, 1993, 88, 421-429.	5.9	9
176	Illuminating Sarcoplasmic Reticulum Calcium. Circulation Research, 2003, 93, 4-5.	4.5	9
177	Do calcium waves propagate between cells and synchronize alternating calcium release in rat ventricular myocytes?. Journal of Physiology, 2012, 590, 6353-6361.	2.9	9
178	Blockade of sodium‑calcium exchanger via ORM-10962 attenuates cardiac alternans. Journal of Molecular and Cellular Cardiology, 2021, 153, 111-122.	1.9	9
179	A sideways look at sparks, quarks, puffs and blips Journal of Physiology, 1996, 497, 2-2.	2.9	8
180	Measurement of Sarcoplasmic Reticulum Ca Content and Sarcolemmal Fluxes during the Transient Stimulation of the Systolic Ca Transient Produced by Caffeine. Annals of the New York Academy of Sciences, 1998, 853, 368-371.	3.8	8

#	Article	IF	CITATIONS
181	Beating to time: calcium clocks, voltage clocks, and cardiac pacemaker activity. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H561-H562.	3.2	8
182	PDE5 Inhibition Suppresses Ventricular Arrhythmias by Reducing SR Ca ²⁺ Content. Circulation Research, 2021, 129, 650-665.	4.5	8
183	The Effects of Intracellular Na on Contraction and Intracellular pH in Mammalian Cardiac Muscle. , 1985, 5, 313-330.		8
184	Measurement of intracellular calcium during the development and relaxation of tonic tension in sheep Purkinje fibres Journal of Physiology, 1986, 375, 269-281.	2.9	7
185	Intracellular pH and buffering power measured in isolated single cells from pregnant rat uterus. Experimental Physiology, 1991, 76, 815-818.	2.0	7
186	pHâ€dependent and â€independent effects inhibit Ca 2+ â€induced Ca 2+ release during metabolic blockade in rat ventricular myocytes. Journal of Physiology, 2003, 550, 413-418.	2.9	7
187	Two centuries of excitation–contraction coupling. Cell Calcium, 2004, 35, 485-489.	2.4	7
188	How does endothelin-1 cause a sustained increase in intracellular sodium and calcium which lead to hypertrophy?. Journal of Molecular and Cellular Cardiology, 2006, 41, 782-784.	1.9	7
189	Calsequestrin Mutations and Sudden Death. Circulation Research, 2008, 103, 223-225.	4.5	7
190	The effect of 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBQ) on intracellular Ca 2+ handling in rat ventricular myocytes. Cell Calcium, 2015, 58, 208-214.	2.4	7
191	Interaction of background Ca ²⁺ influx, sarcoplasmic reticulum threshold and heart failure in determining propensity for Ca ²⁺ waves in sheep heart. Journal of Physiology, 2022, 600, 2637-2650.	2.9	7
192	Sarcoplasmic reticulum and mitochondria in cardiac pathophysiology. Cardiovascular Research, 2007, 77, 231-233.	3.8	6
193	What is the purpose of the large sarcolemmal calcium flux on each heartbeat?. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H493-H494.	3.2	6
194	Activity dependent changes in mammalian ventricular muscle [proceedings]. Journal of Physiology, 1977, 271, 17P-18P.	2.9	6
195	Can changes of ryanodine receptor expression affect cardiac contractility?. Cardiovascular Research, 2000, 45, 1068-1069.	3.8	5
196	How does CaMKIIδ phosphorylation of the cardiac ryanodine receptor contribute to inotropy?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E123; author reply E124.	7.1	5
197	Misleading with citation statistics?. Journal of Physiology, 2019, 597, 2593-2594.	2.9	5
198	A cellular basis for lidocaine's anti-arrhythmic action [proceedings]. Journal of Physiology, 1979, 295, 25P-26P.	2.9	5

#	Article	IF	CITATIONS
199	The effects of metabolic inhibition on intracellular pH and Ca. Molecular and Cellular Biochemistry, 1989, 89, 199-203.	3.1	4
200	Another trigger for the heartbeat. Journal of Physiology, 1998, 513, 1-1.	2.9	4
201	A small leak may sink a great ship but what does it do to the heart?. Journal of Physiology, 2010, 588, 4849-4849.	2.9	4
202	A Tale of Two Leaks. Circulation, 2013, 128, 941-943.	1.6	4
203	A model model: a commentary on DiFrancesco and Noble (1985) â€~A model of cardiac electrical activity incorporating ionic pumps and concentration changes'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140316.	4.0	4
204	Writing a peer review: a primer for junior researchers. Cardiovascular Research, 2019, 115, e93-e95.	3.8	4
205	Chronic vagal nerve stimulation has no effect on tachycardiaâ€induced heart failure progression or excitation–contraction coupling. Physiological Reports, 2020, 8, e14321.	1.7	4
206	Does the cardioprotective effect of Empagliflozin involve inhibition of the sodium-proton exchanger?. Cardiovascular Research, 2021, 117, 2696-2698.	3.8	4
207	Excitation-Contraction Coupling in Cardiac Muscle. Advances in Muscle Research, 2002, , 49-89.	0.4	4
208	Arrhythmogenic effects of hypokalaemia on mammalian ventricular muscle [proceedings]. Journal of Physiology, 1978, 280, 74P-75P.	2.9	4
209	The Ryanodine Receptor: Cause or Consequence of Diabetic Heart Failure?. Journal of Molecular and Cellular Cardiology, 2000, 32, 1377-1378.	1.9	3
210	The Electrogenic Na-K Pump in the Sheep Cardiac Purkinje Fibre. , 1981, , 156-163.		3
211	The effects of Na-Ca exchange on membrane currents in sheep cardiac Purkinje fibers. Society of General Physiologists Series, 1984, 38, 373-80.	0.6	3
212	Sydney Ringer viewed in a new light. Cardiovascular Research, 1994, 28, 1765-1768.	3.8	2
213	pH-induced changes in calcium: functional consequences and mechanisms of action in guinea pig portal vein. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2518-H2526.	3.2	2
214	Calcium signaling in heart: Multiscale, diverse, rapid, local, and remarkable. Journal of Molecular and Cellular Cardiology, 2013, 58, 3-4.	1.9	2
215	Handing Over. Journal of Molecular and Cellular Cardiology, 2016, 101, 173-174.	1.9	2

Electrophysiological effects of cardiac glycosides. , 1986, , 69-78.

#	Article	IF	CITATIONS
217	Does the adenosine A2A receptor stimulate the ryanodine receptor?. Cardiovascular Research, 2007, 73, 247-248.	3.8	1
218	The new team at JMCC. Journal of Molecular and Cellular Cardiology, 2008, 44, 1-2.	1.9	1
219	218â€Action Potential Alternans in the Ageing Ovine Atria. Heart, 2014, 100, A119-A120.	2.9	1
220	Effects of phosphodiesterase-5 inhibition with sildenafil on calcium waves in cardiac myocytes. Lancet, The, 2017, 389, S50.	13.7	1
221	198â€Heart failure increases mitochondrial s-nitrosylation. Heart, 2017, 103, A134-A135.	2.9	1
222	Not all choices are equal. Acta Physiologica, 2018, 223, e13040.	3.8	1
223	Electroâ€physicsâ€iology clarified? No spooky action required. Experimental Physiology, 2019, 104, 1432-1433.	2.0	1
224	2020: An unusual year. Journal of General Physiology, 2021, 153, .	1.9	1
225	The Cranefield Awards. Journal of General Physiology, 2021, 153, .	1.9	1
226	Measurement of calcium entry and exit in quiescent rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2000, 440, 600.	2.8	1
227	Low-potassium inotropy in cardiac muscle [proceedings]. Journal of Physiology, 1978, 284, 138P-139P.	2.9	1
228	The regulation of contraction in cardiac muscle. Nature, 1982, 297, 103-104.	27.8	0
229	Grant policy. Nature, 1993, 364, 375-375.	27.8	0
230	Properties of the Fluorescent Sodium Indicator SBFI in Rat and Rabbit Cardiac Myocytes. Journal of Cardiovascular Electrophysiology, 1994, 5, 637-637.	1.7	0
231	Intracellular pH Is Insensitive to Changes in Intracellular Calcium Concentration in Isolated Rat Ventricular Myocytesa. Annals of the New York Academy of Sciences, 1996, 779, 529-531.	3.8	0
232	Point/Counterpoint: A new feature in the JMCC. Journal of Molecular and Cellular Cardiology, 2008, 44, 949.	1.9	0
233	Chair's introduction. Novartis Foundation Symposium, 2008, , 1-5.	1.1	0
234	Changes of SERCA Activity have Proportionately Smaller Effects on Sarcoplasmic Reticulum Calcium Content. Biophysical Journal, 2011, 100, 290a.	0.5	0

#	Article	IF	CITATIONS
235	Simultaneous Measurement of Cytoplasmic and SR Calcium during Modulation of Ryanodine Receptor Open Probability in Dog Ventricular Myocytes. Biophysical Journal, 2013, 104, 438a.	0.5	0
236	Investigating the Effects of a Cardiotoxic Drug on Calcium Homeostasis in the Heart. Biophysical Journal, 2013, 104, 604a.	0.5	0
237	Effects of phosphodiesterase type 5A inhibition on intracellular calcium handling and its implications for cardioprotection and antiarrhythmogenesis. Lancet, The, 2013, 381, S53.	13.7	0
238	May 2013 sees the celebration of the 80th Birthday of Lionel Opie, Founder of the Journal of Molecular and Cellular Cardiology. Journal of Molecular and Cellular Cardiology, 2013, 58, 1-2.	1.9	0
239	Effect of reduction in ryanodine receptor calcium leak on arrhythmogenesis in rat ventricular myocytes. Lancet, The, 2014, 383, S93.	13.7	0
240	Postnatal Development of T-Tubules in Sheep Atrial Myocytes. Biophysical Journal, 2016, 110, 598a.	0.5	0
241	171â€Amphiphysin ii (bin1) driven transverse tubule formation in cardiac muscle. Heart, 2017, 103, A120.1-A120.	2.9	0
242	179â€Phosphodiesterase-5 inhibition with sildenafil suppresses calcium waves by reducing sarcoplasmic reticulum content. Heart, 2017, 103, A124.1-A124.	2.9	0
243	Bringing European physiologists together. Acta Physiologica, 2018, 222, e13043.	3.8	0
244	Edward Carmeliet: his contributions and scientific legacy. Journal of Physiology, 2021, 599, 4727-4729.	2.9	0
245	A Practical Introduction to the Use of Intracellular Fluorescent Indicators. , 1991, , 257-272.		0
246	Comparison of "Near Membrane―and Bulk Cytoplasmic Calcium Concentration in Single Cardiac Ventricular Myocytes During Spontaneous Calcium Waves. , 1996, , 109-128.		0
247	Climbing aboard. Journal of General Physiology, 2020, 152, .	1.9	0
248	OUP accepted manuscript. Cardiovascular Research, 2021, , .	3.8	0
249	First steps. Journal of General Physiology, 2020, 152, .	1.9	0
250	2022. Journal of General Physiology, 2022, 154, .	1.9	0