
Liudmila A Yolshina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties. Journal of Alloys and Compounds, 2016, 663, 449-459.	2.8	148
2	Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery. Journal of Power Sources, 2015, 278, 87-97.	4.0	39
3	Mechanical properties of submicrocrystalline aluminium matrix composites reinforced by "in situ― graphene through severe plastic deformation processes. Journal of Alloys and Compounds, 2021, 859, 158387.	2.8	19
4	A lead–film electrode on an aluminium substrate to serve as a lead–acid battery plate. Journal of Power Sources, 1999, 78, 84-87.	4.0	17
5	Enhancement of the mechanical properties of aluminum-graphene composites. AIP Conference Proceedings, 2016, , .	0.3	17
6	Development of an electrode for lead-acid batteries possessing a high electrochemical utilization factor and invariable cycling characteristics. Journal of Power Sources, 1997, 65, 71-76.	4.0	16
7	Synthesis of new metal-matrix Al–Al2O3–graphene composite materials. Russian Metallurgy (Metally), 2017, 2017, 631-641.	0.1	16
8	Development of a novel 1-trifluoroacetyl piperidine-based electrolyte for aluminum ion battery. Electrochimica Acta, 2019, 323, 134806.	2.6	16
9	Synthesis of and characterization of freestanding, high-hierarchically structured graphene-nanodiamond films. Materials and Design, 2017, 135, 343-352.	3.3	14
10	The influence of formation conditions on the electrochemical behavior of lead oxide in sulfuric acid solution. Journal of Power Sources, 2009, 191, 36-41.	4.0	13
11	Chemical interaction of liquid aluminum with metal oxides in molten salts. Materials and Design, 2016, 105, 124-132.	3.3	12
12	Fast-charged aluminum-ion battery with aluminum-graphene nanocomposite anode. Ionics, 2021, 27, 249-258.	1.2	12
13	Diamond synthesis in aluminum matrix in molten alkali-halide at ambient pressure. Diamond and Related Materials, 2015, 55, 1-11.	1.8	11
14	Effects of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid composition on transport properties. Journal of Molecular Liquids, 2020, 320, 114482.	2.3	11
15	Synthesis of a Nanocrystalline α-Al2O3 Powder in Molten Halides in the Temperature Range 700–800°С. Russian Metallurgy (Metally), 2020, 2020, 138-141.	0.1	10
16	SEM and XPS Study of Cr6+ Removal from Wastewater via Reduction and Adsorption by Hierarchically Structured Carbon Composite in Neutral Media. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3624-3635.	1.9	10
17	Study of thermal stability of hierarchical structured carbon composite flakes. Diamond and Related Materials, 2021, 119, 108556.	1.8	9
18	Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene. Metals, 2022, 12, 1054.	1.0	9

LIUDMILA A YOLSHINA

#	Article	IF	CITATIONS
19	High-temperature electrochemical synthesis of oxide thin films and nanopowders of some metal oxides. Glass Physics and Chemistry, 2008, 34, 617-622.	0.2	8
20	Transport numbers in the basic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid. Journal of Molecular Liquids, 2021, 335, 116147.	2.3	8
21	Electrodeposition of aluminium from the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride. Electrochimica Acta, 2021, 389, 138715.	2.6	8
22	Molecular dynamic study of the mechanism of formation of 2D carbon nanostructures in a solid Al–C nanocomposite grain. Russian Journal of Physical Chemistry A, 2016, 90, 2444-2448.	0.1	7
23	Raman spectroscopy study of graphene formed by "in situ―chemical interaction of an organic precursor with a molten aluminium matrix. Journal of Raman Spectroscopy, 2020, 51, 221-231.	1.2	7
24	The Effect of Graphene Additives on the Structure and Properties of Aluminum. Physics of Metals and Metallography, 2020, 121, 1193-1202.	0.3	7
25	Corrosion and electrochemical behavior of aluminium treated with high-temperature pulsed plasma in CsCl–NaCl–NaNO3 melt. Corrosion Science, 2011, 53, 2015-2026.	3.0	6
26	A novel electrochemical method for the synthesis of boron doped graphene in the molten salt electrolyte. Synthetic Metals, 2015, 205, 85-91.	2.1	6
27	Molecular Dynamics Study of the Formation of Solid Al–C Nanocomposites. Russian Journal of Physical Chemistry B, 2018, 12, 403-411.	0.2	6
28	Molten salt synthesis and characterization of 1D sodium hexatitanate nanowires. Colloids and Interface Science Communications, 2021, 42, 100398.	2.0	6
29	Creation of thin oxide coatings and oxide nanopowders by anodic oxidation of metals in molten salts. Russian Journal of Inorganic Chemistry, 2008, 53, 539-544.	0.3	5
30	Calculation of the Molar Concentrations of Ions in the Molten System AlCl3–1-Butyl-3-Methylimidazolium Chloride. Russian Metallurgy (Metally), 2021, 2021, 246-252.	0.1	5
31	Features of aluminum electrodeposition from 1,3-dialkylimidazolium chloride chloroaluminate ionic liquids. Journal of Molecular Liquids, 2022, 351, 118693.	2.3	5
32	Effect of plasma treatment on corrosion-electrochemical interaction between titanium and chloride-nitrate melt. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 587-592.	0.3	3
33	Corrosion Behavior of Aluminum–Graphene and Aluminum–Graphite Composite Materials in a 3% NaCl Aqueous Solution. Russian Metallurgy (Metally), 2022, 2022, 153-160.	0.1	3
34	The mechanism of formation of thin oxide coatings and nanopowders at the anodic oxidation of zirconium in molten salts. Protection of Metals, 2008, 44, 257-262.	0.2	2
35	Electrochemical Synthesis of Graphene in Molten Salts. Russian Metallurgy (Metally), 2021, 2021, 2021, 206-212.	0.1	2
36	Electrochemical Synthesis of Titanium Oxide Nanopowders in a Molten Mixture of Alkali Chlorides and Nitrates. Russian Metallurgy (Metally), 2021, 2021, 1029-1035.	0.1	2

LIUDMILA A YOLSHINA

#	Article	IF	CITATIONS
37	Effect of the salt melt composition, temperature, and interaction time on the contact exchange reaction in the MCI-PbCl2-MeN systems. Atomic Energy, 2008, 104, 450-455.	0.1	1
38	Process of electroless deposition of zinc and lead on aluminum in electrolyte melt by contact exchange method. Surface and Coatings Technology, 2010, 204, 4057-4065.	2.2	1
39	A fracture locus for a 1 wt% aluminum-graphene metal matrix composite at 300°C. Letters on Materials, 2018, 8, 184-189.	0.2	1
40	Synthesis and properties of azines functionalized graphene with extremely high adsorptive ability to Eu3+ ions. FlatChem, 2022, 33, 100348.	2.8	1
41	Electrochemical behaviour of lead film electrodes on copper and aluminum in sulfuric acid solutions. , 0, , .		0
42	Effect of plasma treatment on corrosion-electrochemical behavior of titanium in molten mixture of cesium and sodium chlorides. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 724-729.	0.3	0
43	Corrosion-electrochemical properties of the anodic oxide films formed on aluminum in a chloride-nitrate melt in a 0.5 M Aqueous NaCl solution. Russian Metallurgy (Metally), 2014, 2014, 85-96.	0.1	0
44	Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content. Russian Metallurgy (Metally), 2015, 2015, 162-169.	0.1	0