
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhodium-Catalyzed C–H Activation of Phenacyl Ammonium Salts Assisted by an Oxidizing C–N Bond: A Combination of Experimental and Theoretical Studies. Journal of the American Chemical Society, 2015, 137, 1623-1631.	13.7	314
2	A Simple and Highly Efficient Iron Catalyst for a [2+2+2]â€Cycloaddition to Form Pyridines. Angewandte Chemie - International Edition, 2011, 50, 7162-7166.	13.8	182
3	Rhodium(III)-Catalyzed Azacycle-Directed Intermolecular Insertion of Arene C–H Bonds into α-Diazocarbonyl Compounds. Journal of Organic Chemistry, 2013, 78, 5444-5452.	3.2	159
4	Rhodium(III) atalyzed Cï£;C Coupling between Arenes and Aziridines by Cï£;H Activation. Angewandte Chemie - International Edition, 2013, 52, 2577-2580.	13.8	142
5	Enantiodivergent Desymmetrization in the Rhodium(III)â€Catalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie - International Edition, 2018, 57, 15534-15538.	13.8	132
6	Highly Regioselective Migration of the Sulfonyl Group: Easy Access to Functionalized Pyrroles. Angewandte Chemie - International Edition, 2012, 51, 1693-1697.	13.8	129
7	A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)â^'Diamine Ligand. Journal of Organic Chemistry, 2011, 76, 484-491.	3.2	124
8	Mild and efficient copper-catalyzed N-arylation of alkylamines and N–H heterocycles using an oxime-phosphine oxide ligand. Tetrahedron, 2005, 61, 6553-6560.	1.9	123
9	Rhodium(III)-Catalyzed C–H Activation and Amidation of Arenes Using <i>N</i> -Arenesulfonated Imides as Amidating Reagents. Organic Letters, 2013, 15, 3706-3709.	4.6	122
10	A mild and efficient copper-catalyzed coupling of aryl iodides and thiols using an oxime–phosphine oxide ligand. Tetrahedron Letters, 2006, 47, 5781-5784.	1.4	121
11	Rhodiumâ€Catalyzed CH Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3â€Diarylâ€Substituted Indoles. Angewandte Chemie - International Edition, 2015, 54, 10613-10617.	13.8	116
12	Rh(III)-Catalyzed Selenylation of Arenes with Selenenyl Chlorides/Diselenides via C–H Activation. Organic Letters, 2015, 17, 58-61.	4.6	115
13	Reactivity of ynamides in catalytic intermolecular annulations. Chemical Society Reviews, 2021, 50, 2582-2625.	38.1	114
14	Highly efficient and practical phosphoramidite–copper catalysts for amination of aryl iodides and heteroaryl bromides with alkylamines and N(H)-heterocycles. Tetrahedron, 2006, 62, 4435-4443.	1.9	112
15	Palladium-catalyzed desulfitative arylation of azoles with arylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2012, 10, 7479.	2.8	105
16	Iron-Catalyzed Cycloaddition Reaction of Diynes and Cyanamides at Room Temperature. Journal of Organic Chemistry, 2013, 78, 3065-3072.	3.2	98
17	Ruthenium atalyzed Câ^C Bond Cleavage of 2 <i>H</i> â€Azirines: A Formal [3+2+2] Cycloaddition to Fused Azepine Skeletons. Angewandte Chemie - International Edition, 2016, 55, 2861-2865.	13.8	94
18	A Highly Effective Bis(sulfonamide)–Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cuâ€Catalyzed Henry Reaction. Chemistry - A European Journal, 2010, 16, 8259-8261.	3.3	71

#	Article	IF	CITATIONS
19	A Class of Benzene Backbone-Based Olefin–Sulfoxide Ligands for Rh-Catalyzed Enantioselective Addition of Arylboronic Acids to Enones. Journal of Organic Chemistry, 2011, 76, 7256-7262.	3.2	68
20	Base-Catalyzed Cyclization of <i>N</i> -Sulfonyl Propargylamides to Sulfonylmethyl-Substituted Oxazoles via Sulfonyl Migration. Journal of Organic Chemistry, 2013, 78, 4895-4904.	3.2	68
21	First example of asymmetric transfer hydrogenation in water induced by a chiral amino alcohol hydrochloride. Tetrahedron Letters, 2005, 46, 7341-7344.	1.4	67
22	Rhodium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Nitroalkenes Using Olefin–Sulfoxide Ligands. Journal of Organic Chemistry, 2012, 77, 3071-3081.	3.2	66
23	Cu-Catalyzed Ring Opening Reaction of 2 <i>H</i> -Azirines with Terminal Alkynes: An Easy Access to 3-Alkynylated Pyrroles. Organic Letters, 2014, 16, 4806-4809.	4.6	64
24	Concise Synthesis of Novel Practical Sulfamideâ~'Amine Alcohols for the Enantioselective Addition of Diethylzinc to Aldehydes. Journal of Organic Chemistry, 2004, 69, 9123-9127.	3.2	61
25	From Propargylamides to Oxazole Derivatives: NIS-Mediated Cyclization and Further Oxidation by Dioxygen. Journal of Organic Chemistry, 2014, 79, 3052-3059.	3.2	58
26	Efficient copper-catalyzed amination of aryl halides with amines and NH heterocycles using rac-BINOL as ligand. Journal of Molecular Catalysis A, 2006, 256, 256-260.	4.8	56
27	Cyclization reactions of propargylic amides: mild access to N-heterocycles. Tetrahedron Letters, 2015, 56, 32-52.	1.4	56
28	Transition-Metal Controlled Diastereodivergent Radical Cyclization/Azidation Cascade of 1,7-Enynes. Journal of Organic Chemistry, 2016, 81, 4412-4420.	3.2	55
29	Ruthenium-Catalyzed [3 + 2] Cycloaddition of 2 <i>H</i> -Azirines with Alkynes: Access to Polysubstituted Pyrroles. Journal of Organic Chemistry, 2016, 81, 12031-12037.	3.2	54
30	Polymer-supported palladium–manganese bimetallic catalyst for the oxidative carbonylation of amines to carbamate esters. Applied Catalysis A: General, 1999, 183, 81-84.	4.3	53
31	Tf ₂ NH-Catalyzed Formal [3 + 2] Cycloaddition of Ynamides with Dioxazoles: A Metal-Free Approach to Polysubstituted 4-Aminooxazoles. Journal of Organic Chemistry, 2017, 82, 3935-3942.	3.2	53
32	Recent advances in the iron-catalyzed cycloaddition reactions. Science Bulletin, 2012, 57, 2338-2351.	1.7	52
33	Cyclization and <i>N</i> -lodosuccinimide-Induced Electrophilic Iodocyclization of 3-Aza-1,5-enynes To Synthesize 1,2-Dihydropyridines and 3-lodo-1,2-dihydropyridines. Journal of Organic Chemistry, 2013, 78, 4065-4074.	3.2	52
34	Rhodium atalyzed Cyclization of Diynes with Nitrones: A Formal [2+2+5] Approach to Bridged Eightâ€Membered Heterocycles. Angewandte Chemie - International Edition, 2014, 53, 11940-11943.	13.8	51
35	Direct Oxidative C-P Bond Formation of Indoles with Dialkyl Phosphites. Synthesis, 2012, 44, 941-945.	2.3	48
36	Synthesis of Tetrasubstituted Pyrroles from Terminal Alkynes and Imines. Organic Letters, 2013, 15, 3146-3149.	4.6	45

#	Article	IF	CITATIONS
37	Eco-friendly synthesis of pyridines via rhodium-catalyzed cyclization of diynes with oximes. Green Chemistry, 2015, 17, 799-803.	9.0	45
38	A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) ₂ -Catalyzed Asymmetric Friedel–Crafts Alkylation Reaction of Indoles with Nitroalkenes. Organic Letters, 2011, 13, 4834-4837.	4.6	44
39	Rhodiumâ€Catalyzed [2+2+2] Cycloaddition of Oximes and Diynes To Give Pyridines. Chemistry - A European Journal, 2013, 19, 2252-2255.	3.3	44
40	Ruthenium atalyzed [2+2+2] Cycloaddition of Diynes with Nitriles in Pure Water. ChemSusChem, 2012, 5, 854-857.	6.8	42
41	Direct oxidative phosphonylation of amines under metal-free conditions. Tetrahedron Letters, 2012, 53, 681-683.	1.4	41
42	Enantiodivergent Desymmetrization in the Rhodium(III) atalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie, 2018, 130, 15760-15764.	2.0	41
43	Nickel-catalyzed [3 + 2] cycloaddition of diynes with methyleneaziridines via $Ca\in C$ bond cleavage. Chemical Communications, 2013, 49, 5073.	4.1	40
44	Gold(I)-Catalyzed Intra- and Intermolecular Alkenylations of β-Yne-pyrroles: Facile Formation of Fused Cycloheptapyrroles and Functionalized Pyrroles. Organic Letters, 2014, 16, 2244-2247.	4.6	38
45	Synthesis of Functionalized Oxazoles via Silver-Catalyzed Cyclization of Propargylamides and Allenylamides. Journal of Organic Chemistry, 2013, 78, 7714-7726.	3.2	37
46	Cu(OTf) ₂ -Catalyzed Asymmetric Friedel–Crafts Alkylation Reaction of Indoles with Arylidene Malonates Using Bis(sulfonamide)-Diamine Ligands. Journal of Organic Chemistry, 2013, 78, 5611-5617.	3.2	36
47	One-pot synthesis of pyridines from 3-aza-1,5-enynes. Tetrahedron, 2013, 69, 10245-10248.	1.9	35
48	Reversal of enantioselectivity by adding Ti(OiPr)4: novel sulfamide-amine alcohol ligands for the catalytic asymmetric addition of diethylzinc to aldehydes. Journal of Molecular Catalysis A, 2005, 225, 33-37.	4.8	32
49	Selective synthesis of functionalized pyrroles from 3-aza-1,5-enynes. Organic and Biomolecular Chemistry, 2016, 14, 526-541.	2.8	32
50	Tf ₂ NH-catalyzed formal [3 + 2] cycloaddition of oxadiazolones with ynamides: a simple access to aminoimidazoles. Organic and Biomolecular Chemistry, 2017, 15, 3413-3417.	2.8	31
51	A convenient resolution method for 1,1′-bi-2-naphthol and 4,4′-dibromo-1,1′-spirobiindane-7,7′-diol wi menthyl chloroformate in the presence of TBAB. Tetrahedron: Asymmetry, 2004, 15, 665-669.	th 1.8	30
52	BrĂ̈,nsted acid-catalyzed formal [5+2+1] cycloaddition of ynamides and isoxazoles with water: access to oxygen-bridged tetrahydro-1,4-oxazepines. Chemical Communications, 2018, 54, 3963-3966.	4.1	29
53	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie - International Edition, 2021, 60, 1583-1587.	13.8	29
54	Photocatalytic H ₂ production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin. Faraday Discussions, 2017, 198, 197-209.	3.2	27

#	Article	IF	CITATIONS
55	Tf-based sulfamide-amine alcohol-catalyzed enantioselective alkynylation of aldehydes. Tetrahedron Letters, 2008, 49, 1686-1689.	1.4	25
56	DABCO-Catalyzed Synthesis of Trifluoromethylated Furans from Propargyl Alcohols and Methyl 2-Perfluoroalkynoate. Journal of Organic Chemistry, 2014, 79, 2105-2110.	3.2	25
57	Sulfamide-amine alcohol catalyzed enantioselective alkynylation of aromatic ketones. Journal of Molecular Catalysis A, 2005, 237, 126-131.	4.8	23
58	Base-Catalyzed Selective Synthesis of 2-Azabicyclo[3.2.0]hept-2-enes and Sulfonyl Vinyl-Substituted Pyrroles from 3-Aza-1,5-enynes. Organic Letters, 2015, 17, 3944-3947.	4.6	23
59	Chiral olefin–sulfoxide as ligands for rhodium-catalyzed asymmetric conjugate addition of arylboronic acids to unsaturated esters. Organic and Biomolecular Chemistry, 2013, 11, 7893.	2.8	22
60	Synthesis of polysubstituted pyrroles via Ag(I)-mediated conjugate addition and cyclization reaction of terminal alkynes with amines. Tetrahedron, 2014, 70, 490-494.	1.9	21
61	Readily available sulfamide-amine alcohols for enantioselective phenylacetylene addition to aldehydes in the absence of Ti(OiPr)4. Chirality, 2005, 17, 245-249.	2.6	20
62	DABCO-catalyzed synthesis of 3-bromo-/3-iodo-2H-pyrans from propargyl alcohols, dialkyl acetylene dicarboxylates, and N-bromo-/N-iodosuccinimides. Tetrahedron Letters, 2015, 56, 401-403.	1.4	20
63	Highly efficient copper-catalyzed N-arylation of alkylamines with aryl iodides using phosphoramidite as ligand. Catalysis Communications, 2005, 6, 784-787.	3.3	19
64	Cobalt-Catalyzed Regioselective Carboamidation of Alkynes with Imides Enabled by Cleavage of C–N and C–C Bonds. Organic Letters, 2020, 22, 3386-3391.	4.6	19
65	Asymmetric cyclopropanation catalyzed by copper–Schiff's base complexes. Journal of Molecular Catalysis A, 2001, 165, 67-71.	4.8	18
66	Synthesis of Polyfluoroalkyl Cyclobutenes from 3-Aza-1,5-enynes via an Aza-Claisen Rearrangement/Cyclization Cascade. Organic Letters, 2013, 15, 4512-4515.	4.6	18
67	In situ NMR study of asymmetric borane reduction reaction—an abnormal factor in the temperature effect on the bis-oxazaborolidine catalyst and the relationship between the catalyst structure and selectivity. Tetrahedron: Asymmetry, 2000, 11, 3351-3359.	1.8	17
68	Highly efficient palladium-catalyzed Suzuki–Miyaura cross-coupling of aryl bromides using 2-(diphenylphosphino) benzaldoxime ligand. Journal of Molecular Catalysis A, 2005, 237, 210-214.	4.8	15
69	THE PECULIAR ELECTRONIC STRUCTURE OF THE DI-METALLOCENE: THE EVIDENCE FOR THE STABILITY AND THE CHARACTER OF METAL–METAL BOND. Journal of Theoretical and Computational Chemistry, 2006, 05, 461-473.	1.8	15
70	O-Transfer-facilitated cyclizations of propargylamides with TMSN ₃ : selective synthesis of tetrazoles and dihydroimidazoles. Chemical Communications, 2015, 51, 15398-15401.	4.1	15
71	A highly active palladium-phosphoramidite catalyst for the Suzuki cross-coupling of aryl bromides. Journal of Molecular Catalysis A, 2006, 243, 239-243.	4.8	13
72	NIS-mediated ring-closure/opening cascade reactions of allylamides: an expedient route to oxazolines. Tetrahedron, 2015, 71, 6935-6943.	1.9	13

#	Article	IF	CITATIONS
73	Facile synthesis of 5H-benzo[b]carbazol-6-yl ketones via sequential reaction of Cu-catalyzed Friedel–Crafts alkylation, iodine-promoted cyclization, nucleophilic substitution and aromatization. Organic and Biomolecular Chemistry, 2014, 12, 6806-6811.	2.8	12
74	Ruthenium atalyzed Câ^'C Bond Cleavage of 2 <i>H</i> â€Azirines: A Formal [3+2+2] Cycloaddition to Fused Azepine Skeletons. Angewandte Chemie, 2016, 128, 2911-2915.	2.0	12
75	Reversal of stereochemistry by adding Ti(OiPr)4 in the enantioselective phenylacetylene addition to aldehydes using l-prolinol-backbone ligand. Journal of Molecular Catalysis A, 2005, 232, 9-12.	4.8	11
76	Merging Gold Catalysis and BrĄ̃nsted Acid Catalysis for the Synthesis of Tetrahydrobenzo[<i>b</i>][1,8]naphthyridines. Advanced Synthesis and Catalysis, 2018, 360, 875-880.	4.3	11
77	Oxidative carbonylation of aniline over a polymer-supported palladium–copper catalyst. Reactive and Functional Polymers, 2000, 45, 55-59.	4.1	10
78	Silver-catalyzed cyclization of nitrones with 2-azetine: a radical approach to 2,3-disubstituted quinolines. Organic Chemistry Frontiers, 2017, 4, 1833-1838.	4.5	10
79	Ring-opening and cyclization of aziridines with aryl azides: metal-free synthesis of 6-(triflyloxy)quinolines. Organic Chemistry Frontiers, 2018, 5, 3488-3493.	4.5	10
80	Chiral benzene backbone-based sulfoxide-olefin ligands for highly enantioselective Rh-catalyzed addition of arylboronic acids to <i>N</i> -tosylarylimines. RSC Advances, 2019, 9, 25377-25381.	3.6	10
81	Copper-catalyzed boroacylation of allenes to access tetrasubstituted vinylboronates. Organic and Biomolecular Chemistry, 2020, 18, 9253-9260.	2.8	9
82	Reversal of predominant enantioselectivity in the asymmetric alkynylation reaction using sulfamide-amine alcohols. Catalysis Communications, 2006, 7, 550-553.	3.3	8
83	Silver-catalyzed [3+2+1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Letters, 2018, 59, 361-364.	1.4	8
84	Synthesis of spiropyrrolidine oxindoles through Rh(II)-catalyzed olefination/cyclization of diazooxindoles and vinyl azides. Chinese Journal of Catalysis, 2019, 40, 177-183.	14.0	8
85	Cu-Catalyzed Coupling of Aryl Iodides with Thiols Using Carbonyl-Phosphine Oxide Ligands. Chinese Journal of Catalysis, 2011, 32, 1129-1132.	14.0	7
86	Rhodium-Catalyzed Deuterated Tsuji–Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. Journal of the American Chemical Society, 2022, 144, 11081-11087.	13.7	7
87	Highly Enantioselective Rh-Catalyzed Arylation of N,N-Dimethylsulfamoyl-Protected Aldimines and Cyclic N-Sulfonylimines with Chiral Phenyl Backbone Sulfoxide-Olefin Ligands. Synthesis, 2020, 52, 1498-1511.	2.3	6
88	Recent Progress of Sulfoxide and <i>N</i> -Sulfinyl Ligands in Asymmetric Catalysis. Chinese Journal of Organic Chemistry, 2014, 34, 267.	1.3	6
89	Nickel-catalyzed cycloaddition of methyleneaziridines with diynes to synthesize fused anilines. Tetrahedron Letters, 2015, 56, 4753-4755.	1.4	5
90	Rapid assembly of 3-azidomethylfurans from 2-(1-alkynyl)-2-alken-1-ones enabled by silver catalysis. Tetrahedron, 2020, 76, 131327.	1.9	5

#	Article	IF	CITATIONS
91	Ruthenium(<scp>ii</scp>)-catalyzed intermolecular annulation of alkenyl sulfonamides with alkynes: access to bicyclic sultams. Chemical Communications, 2020, 56, 2614-2617.	4.1	5
92	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie, 2021, 133, 1607-1611.	2.0	5
93	Enantioselective Alkynylzinc Addition to Carbonyl Compounds by Tfâ€based Sulfamideâ€amine Alcohol Catalysis. Chinese Journal of Chemistry, 2009, 27, 2013-2019.	4.9	4
94	Methylsulfonyl-Based Sulfamide-Amine Alcohol as a Ligand for Enantioselective Alkynylation of Aldehydes. Chinese Journal of Catalysis, 2010, 31, 1098-1102.	14.0	4
95	Synthesis of functionalized 2-pyridones via Michael addition and cyclization reaction of amines, alkynes and dialkyl acetylene dicarboxylates. RSC Advances, 2013, 3, 21222.	3.6	4
96	Facile Synthesis of Enantiopure 1,1′-Spirobiindane-7,7′-diol and Its 4,4′-Derivatives: Application in Enantioselective Addition of Diethylzinc to Aromatic Aldehydes. Synthesis, 2004, 2004, 2805-2808.	2.3	2
97	Nickel-promoted ligand-free palladium-catalyzed Suzuki coupling reaction. Reaction Kinetics and Catalysis Letters, 2005, 85, 277-282.	0.6	2
98	Silica modified with a thiourea derivative as a new stationary phase for hydrophilic interaction liquid chromatography. Journal of Separation Science, 2015, 38, 3852-3861.	2.5	2
99	(Z)â€lâ€[2â€(Tribenzylstannyl)vinyl]â€lâ€cyclooctanol: Synthesis, Characterization, Halodebenzylation, and Crystal Structure. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2004, 34, 565-572.	1.8	1
100	Transition Metal-Catalyzed Decarbonylative Functionalization of Phthalimides. Synthesis, 0, , .	2.3	1
101	Concise Synthesis of Novel Practical Sulfamide?Amine Alcohols for the Enantioselective Addition of Diethylzinc to Aldehydes ChemInform, 2005, 36, no.	0.0	0
102	Mild and Efficient Copper-Catalyzed N-Arylation of Alkylamines and N—H Heterocycles Using an Oxime-Phosphine Oxide Ligand ChemInform, 2005, 36, no.	0.0	0
103	First Example of Asymmetric Transfer Hydrogenation in Water Induced by a Chiral Amino Alcohol Hydrochloride ChemInform, 2006, 37, no.	0.0	0
104	Palladium atalyzed Câ^'H Functionalization of Diaryl 1,3,5â€Triazines. European Journal of Organic Chemistry, 2021, 2021, 2006-2012.	2.4	0