List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746421/publications.pdf Version: 2024-02-01

RENILE CHEN

#	Article	IF	CITATIONS
1	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	23.0	957
2	Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews, 2018, 47, 7239-7302.	18.7	624
3	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, 3, 487-516.	6.4	592
4	Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials, 2010, 176, 288-293.	6.5	469
5	Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 2010, 30, 2615-2621.	3.7	389
6	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	4.5	385
7	Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 2015, 282, 544-551.	4.0	343
8	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324
9	Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 29732-29743.	4.0	309
10	Ultrathin Surface Coating of Nitrogenâ€Doped Graphene Enables Stable Zinc Anodes for Aqueous Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101649.	11.1	302
11	Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry and Engineering, 2017, 5, 5224-5233.	3.2	301
12	A Highâ€Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries. Advanced Materials, 2020, 32, e2002168.	11.1	281
13	Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries. Nano Letters, 2014, 14, 5899-5904.	4.5	268
14	Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management, 2018, 71, 362-371.	3.7	267
15	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€Ion Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	11.1	264
16	Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 2014, 262, 380-385.	4.0	242
17	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	13.1	215
18	Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy and Environmental Science, 2017, 10, 1660-1667.	15.6	211

#	Article	IF	CITATIONS
19	A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy, 2017, 39, 273-283.	8.2	208
20	In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI ₂ Br Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801050.	10.2	195
21	Multifunctional AlPO ₄ Coating for Improving Electrochemical Properties of Low-Cost Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 3773-3781.	4.0	189
22	Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy, 2011, 108, 220-225.	1.8	187
23	Electrolytes for Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 2974-2997.	7.2	187
24	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27124-27130.	4.0	185
25	Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. Journal of Power Sources, 2018, 377, 70-79.	4.0	184
26	Selfâ€Assembly of 0D–2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Advanced Materials, 2021, 33, e2101204.	11.1	183
27	Ionogel Electrolytes for Highâ€Performance Lithium Batteries: A Review. Advanced Energy Materials, 2018, 8, 1702675.	10.2	182
28	Advanced High Energy Density Secondary Batteries with Multiâ€Electron Reaction Materials. Advanced Science, 2016, 3, 1600051.	5.6	180
29	A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13527-13554.	3.2	179
30	Pâ€Ðoped NiTe ₂ with Teâ€Vacancies in Lithium–Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion. Advanced Materials, 2022, 34, e2106370.	11.1	173
31	Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. Journal of Physical Chemistry C, 2011, 115, 24411-24417.	1.5	172
32	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	11.1	172
33	From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chemical Communications, 2015, 51, 18-33.	2.2	170
34	Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy, 2018, 53, 524-535.	8.2	165
35	Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.	8.2	162
36	An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li–S Batteries. ACS Applied Materials & Interfaces, 2014, 6, 15542-15549.	4.0	157

#	Article	IF	CITATIONS
37	Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy, 2019, 64, 103965.	8.2	153
38	Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Znâ€ion Batteries. Advanced Materials, 2022, 34, e2106897.	11.1	153
39	3D-0D Graphene-Fe ₃ O ₄ Quantum Dot Hybrids as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26878-26885.	4.0	152
40	Atomic Iron Catalysis of Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19311-19317.	4.0	152
41	Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 11029-11035.	3.2	152
42	Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. Journal of Power Sources, 2016, 319, 195-201.	4.0	150
43	Sustainable Recycling and Regeneration of Cathode Scraps from Industrial Production of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 7041-7049.	3.2	148
44	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	5.8	143
45	Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Letters, 2021, 13, 203.	14.4	143
46	An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. Journal of Power Sources, 2016, 306, 70-77.	4.0	140
47	Innovative Application of Acid Leaching to Regenerate Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ Cathodes from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5959-5968.	3.2	140
48	Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 31669-31676.	4.0	139
49	Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry, 2019, 21, 5904-5913.	4.6	136
50	Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Materials, 2018, 14, 383-391.	9.5	135
51	Revealing of Active Sites and Catalytic Mechanism in N-Coordinated Fe, Ni Dual-Doped Carbon with Superior Acidic Oxygen Reduction than Single-Atom Catalyst. Journal of Physical Chemistry Letters, 2020, 11, 1404-1410.	2.1	131
52	Recent advances in nanostructured carbon for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 1604-1630.	5.2	130
53	Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Composites Science and Technology, 2018, 164, 187-194.	3.8	129
54	Development and Challenges of Functional Electrolytes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1800919.	7.8	129

#	Article	IF	CITATIONS
55	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 10372-10375.	7.2	124
56	Electro–Chemo–Mechanical Issues at the Interfaces in Solid‣tate Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900950.	7.8	124
57	Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100810.	11.1	121
58	Advanced Lithium–Sulfur Batteries Enabled by a Bioâ€Inspired Polysulfide Adsorptive Brush. Advanced Functional Materials, 2016, 26, 8418-8426.	7.8	120
59	Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016, 1, 423-444.	4.1	119
60	Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer. ACS Applied Materials & amp; Interfaces, 2016, 8, 23095-23104.	4.0	119
61	Boosting Fast Sodium Storage of a Largeâ€Scalable Carbon Anode with an Ultralong Cycle Life. Advanced Energy Materials, 2018, 8, 1703159.	10.2	119
62	Novel Solid‣tate Li/LiFePO ₄ Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications. Advanced Materials, 2011, 23, 5081-5085.	11.1	116
63	Conversion Mechanisms of Selective Extraction of Lithium from Spent Lithium-Ion Batteries by Sulfation Roasting. ACS Applied Materials & Interfaces, 2020, 12, 18482-18489.	4.0	115
64	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15537-15542.	4.0	113
65	Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy, 2019, 60, 866-874.	8.2	113
66	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	3.6	113
67	Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 65.	14.4	112
68	A 3D flower-like VO ₂ /MXene hybrid architecture with superior anode performance for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1315-1322.	5.2	112
69	Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 16144-16150.	3.2	111
70	Systematic Effect for an Ultralong Cycle Lithium–Sulfur Battery. Nano Letters, 2015, 15, 7431-7439.	4.5	110
71	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Ovalâ€Like Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	11.1	110
72	A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Management, 2019, 85, 437-444.	3.7	110

#	Article	IF	CITATIONS
73	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li ⁺ Diffusion Pathway. ACS Applied Materials & Interfaces, 2016, 8, 582-587.	4.0	108
74	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 5488-5494.	4.5	104
75	A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodiumâ€ion Batteries. Small, 2018, 14, e1801246.	5.2	104
76	Nature-Inspired Na ₂ Ti ₃ O ₇ Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11669-11677.	4.0	103
77	"Liquid-in-Solid―and "Solid-in-Liquid―Electrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. Chemistry of Materials, 2016, 28, 848-856.	3.2	100
78	Refining Energy Levels in ReS ₂ Nanosheets by Lowâ€Valent Transitionâ€Metal Doping for Dualâ€Boosted Electrochemical Ammonia/Hydrogen Production. Advanced Functional Materials, 2020, 30, 1907376.	7.8	99
79	Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. Journal of Power Sources, 2014, 249, 28-34.	4.0	98
80	Exposing the {010} Planes by Oriented Self-Assembly with Nanosheets To Improve the Electrochemical Performances of Ni-Rich Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 6407-6414.	4.0	98
81	Highâ€Performance Aqueous Zinc Batteries Based on Organic/Organic Cathodes Integrating Multiredox Centers. Advanced Materials, 2021, 33, e2106469.	11.1	98
82	Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. Journal of Power Sources, 2013, 228, 206-213.	4.0	97
83	An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. Journal of Materials Chemistry A, 2019, 7, 21766-21773.	5.2	97
84	A Highly Conductive COF@CNT Electrocatalyst Boosting Polysulfide Conversion for Li–S Chemistry. ACS Energy Letters, 2021, 6, 3053-3062.	8.8	97
85	Structural and Electrochemical Study of Hierarchical LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21939-21947.	4.0	95
86	Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 16078-16086.	4.0	95
87	Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Nano Letters, 2021, 21, 3310-3317.	4.5	95
88	Preparation of MnO ₂ -Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. ACS Applied Materials & Interfaces, 2017, 9, 25369-25376.	4.0	94
89	Na2NixCo1â^'xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries. Electrochemistry Communications, 2015, 59, 91-94.	2.3	93
90	Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23635-23645.	4.0	93

#	Article	IF	CITATIONS
91	Nature-Inspired, Graphene-Wrapped 3D MoS ₂ Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22323-22331.	4.0	93
92	An "Etherâ€Inâ€Water†Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004017.	11.1	93
93	Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy, 2017, 31, 9-18.	8.2	91
94	Boosting Highâ€Rate Li–S Batteries by an MOFâ€Derived Catalytic Electrode with a Layerâ€byâ€Layer Structure Advanced Science, 2019, 6, 1802362.	5.6	91
95	Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochimica Acta, 2018, 292, 217-226.	2.6	90
96	Platinum oated Hollow Graphene Nanocages as Cathode Used in Lithiumâ€Oxygen Batteries. Advanced Functional Materials, 2016, 26, 7626-7633.	7.8	88
97	A Li ⁺ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9530-9536.	5.2	88
98	Electrocatalytic Interlayer with Fast Lithium–Polysulfides Diffusion for Lithium–Sulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. Advanced Functional Materials, 2020, 30, 2000742.	7.8	87
99	High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013, 233, 115-120.	4.0	86
100	Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chemical Engineering Journal, 2019, 366, 313-320.	6.6	86
101	Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resources, Conservation and Recycling, 2022, 180, 106164.	5.3	86
102	Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Energy Storage Materials, 2019, 22, 376-383.	9.5	85
103	Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zincâ€kon Batteries. Advanced Materials, 2022, 34, e2200782.	11.1	85
104	Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 2018, 25, 25659-25667.	2.7	84
105	Lithium Induced Nanoâ€Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2006950.	7.8	84
106	"Tai Chi―philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy, 2018, 47, 35-42.	8.2	83
107	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	5.2	83
108	Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy, 2020, 70, 104532.	8.2	83

#	Article	IF	CITATIONS
109	Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochimica Acta, 2018, 285, 78-85.	2.6	82
110	Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. Journal of Power Sources, 2018, 396, 734-741.	4.0	82
111	Toward Rapidâ€Charging Sodiumâ€lon Batteries using Hybridâ€Phase Molybdenum Sulfide Selenideâ€Based Anodes. Advanced Materials, 2020, 32, e2003534.	11.1	82
112	Synergetic Anion Vacancies and Dense Heterointerfaces into Bimetal Chalcogenide Nanosheet Arrays for Boosting Electrocatalysis Sulfur Conversion. Advanced Materials, 2022, 34, e2109552.	11.1	81
113	Engineering Catalytic CoSe–ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions. Advanced Science, 2022, 9, e2103456.	5.6	79
114	Progress in electrolyte and interface of hard carbon and graphite anode for sodiumâ€ion battery. , 2022, 4, 458-479.		77
115	Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Materials, 2014, 2, .	2.2	76
116	Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. ACS Applied Materials & Interfaces, 2019, 11, 22339-22345.	4.0	75
117	Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. Journal of Power Sources, 2007, 172, 395-403.	4.0	74
118	Enhanced Air Stability and High Li-Ion Conductivity of Li _{6.988} P _{2.994} Nb _{0.2} S _{10.934} O _{0.6} Glass–Ceramic Electrolyte for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces. 2020. 12. 21548-21558.	4.0	74
119	Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for Highâ€Performance Lithium/Sodium Storage. Small, 2021, 17, e2102893.	5.2	72
120	Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17033-17041.	5.2	70
121	Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chinese Chemical Letters, 2020, 31, 1474-1489.	4.8	68
122	Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Applied Energy Materials, 2021, 4, 6261-6268.	2.5	68
123	Coralline Glassy Lithium Phosphate-Coated LiFePO ₄ Cathodes with Improved Power Capability for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 6013-6021.	1.5	66
124	Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodiumâ€ion Batteries with Favorable Kinetics. Advanced Science, 2018, 5, 1800613.	5.6	65
125	An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. Journal of Materials Chemistry A, 2017, 5, 24292-24298.	5.2	64
126	Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamineâ€Based "Nanoâ€Binder―for Double‧helled Sulfur Cathodes. Advanced Energy Materials, 2017, 7, 1601591.	10.2	64

#	Article	IF	CITATIONS
127	Selfâ€Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery. Advanced Science, 2016, 3, 1500306.	5.6	63
128	Dynamic Intercalation–Conversion Site Supported Ultrathin 2D Mesoporous SnO ₂ /SnSe ₂ Hybrid as Bifunctional Polysulfide Immobilizer and Lithium Regulator for Lithium–Sulfur Chemistry. ACS Nano, 2022, 16, 10783-10797.	7.3	63
129	The Positive Roles of Integrated Layered-Spinel Structures Combined with Nanocoating in Low-Cost Li-Rich Cathode Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ for Lithium-Ion Batteries, ACS Applied Materials & amp: Interfaces, 2014, 6, 21711-21720.	4.0	62
130	Extrinsic Movable lons in MAPbI ₃ Modulate Energy Band Alignment in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701981.	10.2	62
131	<i>In situ</i> formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A, 2020, 8, 1247-1253.	5.2	61
132	Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. Journal of Power Sources, 2017, 342, 405-413.	4.0	60
133	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2002013.	7.8	60
134	A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries. Applied Surface Science, 2018, 440, 770-777.	3.1	59
135	Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. ACS Applied Energy Materials, 2020, 3, 8532-8542.	2.5	59
136	Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Materials, 2021, 39, 203-224.	9.5	59
137	Sulfur cathode based on layered carbon matrix for high-performance Li–S batteries. Nano Energy, 2015, 12, 742-749.	8.2	57
138	Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries. Journal of Power Sources, 2016, 302, 7-12.	4.0	56
139	3D Reticular Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 1516-1523.	4.0	56
140	Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1093-1100.	2.5	55
141	Hierarchical mesoporous/macroporous Co ₃ O ₄ ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 17620-17626.	5.2	54
142	Ionic liquid-based electrolyte with binary lithium salts for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 296, 10-17.	4.0	54
143	A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2021, 407, 127149.	6.6	54
144	A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 2018, 4, 219-225.	1.7	51

#	Article	IF	CITATIONS
145	Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11205-11213.	5.2	51
146	Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. ACS Applied Materials & Interfaces, 2017, 9, 8669-8678.	4.0	50
147	Microorganism-moulded pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /C nanocomposite for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9982-9990.	5.2	50
148	A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium–sulfur batteries. Energy Storage Materials, 2017, 9, 126-133.	9.5	50
149	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	2.1	50
150	Confined Growth of Nano-Na ₃ V ₂ (PO ₄) ₃ in Porous Carbon Framework for High-Rate Na-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 3107-3115.	4.0	50
151	Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. Journal of Power Sources, 2019, 436, 226868.	4.0	48
152	Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li–S batteries. Chemical Communications, 2020, 56, 3007-3010.	2.2	48
153	2D Amorphous Moâ€Doped CoB for Bidirectional Sulfur Catalysis in Lithium Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	48
154	Fe ₂ VO ₄ Nanoparticles Anchored on Ordered Mesoporous Carbon with Pseudocapacitive Behaviors for Efficient Sodium Storage. Advanced Functional Materials, 2021, 31, 2009756.	7.8	46
155	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13950-13958.	4.0	45
156	Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochimica Acta, 2018, 260, 986-993.	2.6	44
157	Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202, 322-331.	4.0	43
158	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	5.8	42
159	Highâ€Lithiophilicity Host with Micro/Nanostructured Active Sites based on Wenzel Wetting Model for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2106676.	7.8	42
160	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied Materials & Interfaces, 2016, 8, 2905-2909.	4.0	40
161	Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li–S batteries. Chemical Engineering Journal, 2022, 430, 132734.	6.6	40
162	Surface modification of spinel λ-MnO 2 and its lithium adsorption properties from spent lithium ion batteries. Applied Surface Science, 2014, 315, 59-65.	3.1	39

#	Article	IF	CITATIONS
163	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	5.2	39
164	Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chemical Engineering Journal, 2021, 425, 130535.	6.6	39
165	Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. Journal of Power Sources, 2018, 383, 80-86.	4.0	38
166	Trimming the π bridge of microporous frameworks for bidentate anchoring of polysulfides to stabilize lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 19001-19010.	5.2	38
167	A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. Journal of Materials Chemistry A, 2013, 1, 3659.	5.2	37
168	A Pralineâ€Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur Batteries. Small, 2017, 13, 1700357.	5.2	37
169	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Letters, 2021, 21, 2074-2080.	4.5	37
170	The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 245, 898-907.	4.0	36
171	Surface modification of a cobalt-free layered Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ oxide with the FePO ₄ /Li ₃ PO ₄ composite as the cathode for lithium-ion batteries, lournal of Materials Chemistry A, 2015, 3, 9528-9537.	5.2	36
172	Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10882-10889.	4.0	36
173	Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells. Applied Physics Letters, 2018, 112, .	1.5	36
174	Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5142-5147.	5.2	35
175	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Journal of Materials Chemistry A, 2017, 5, 24677-24685.	5.2	35
176	Sustainable Upcycling of Spent Lithiumâ€lon Batteries Cathode Materials: Stabilization by In Situ Li/Mn Disorder. Advanced Energy Materials, 2022, 12, .	10.2	35
177	Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries. Science Bulletin, 2012, 57, 4188-4194.	1.7	34
178	Bioinspired Controllable Electro hemomechanical Coloration Films. Advanced Functional Materials, 2019, 29, 1806383.	7.8	34
179	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale, 2020, 12, 9416-9422.	2.8	34
180	Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 682-689.	5.2	34

#	Article	IF	CITATIONS
181	Micrometerâ€Sized RuO ₂ Catalysts Contributing to Formation of Amorphous Naâ€Deficient Sodium Peroxide in Na–O ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700632.	7.8	33
182	Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. Energy Storage Materials, 2018, 11, 100-111.	9.5	33
183	Sustainable Regeneration of High-Performance Li _{1–<i>x</i>} Na <i>_x</i> CoO ₂ from Cathode Materials in Spent Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2607-2615.	2.5	33
184	A universal strategy for high-voltage aqueous batteries <i>via</i> lone pair electrons as the hydrogen bond-breaker. Energy and Environmental Science, 2022, 15, 2653-2663.	15.6	33
185	Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites. Journal of Materials Chemistry A, 2018, 6, 20896-20903.	5.2	32
186	Enhancing Interfacial Contact in Solid‣tate Batteries with a Gradient Composite Solid Electrolyte. Small, 2021, 17, e2006578.	5.2	32
187	An Antipulverization and Highâ€Continuity Lithium Metal Anode for Highâ€Energy Lithium Batteries. Advanced Materials, 2021, 33, e2105029.	11.1	32
188	Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for Lithium–Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 22305-22315.	4.0	31
189	Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. Journal of Catalysis, 2019, 374, 43-50.	3.1	31
190	Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries. Chemical Engineering Journal, 2020, 391, 123529.	6.6	31
191	Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm <mml:math <br="" altimg="si0001.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mrow><mml:mo stretchy="true">Â⁻</mml:mo </mml:mrow></mml:mover></mml:math> m phase. Energy Storage	9.5	30
192	Materials, 2017, 6, 134-140. Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochemistry Communications, 2018, 97, 100-104.	2.3	30
193	Heteroatom Si Substituent Imidazolium-Based Ionic Liquid Electrolyte Boosts the Performance of Dendrite-Free Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12154-12160.	4.0	30
194	Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Materials, 2019, 20, 388-394.	9.5	30
195	Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Waste Management, 2020, 114, 166-173.	3.7	30
196	Template-Assisted Hydrothermal Synthesis of Li ₂ MnSiO ₄ as a Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10779-10784.	4.0	29
197	A leaf-like Al ₂ O ₃ -based quasi-solid electrolyte with a fast Li ⁺ conductive interface for stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 7280-7287.	5.2	29
198	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336.	5.0	29

#	Article	IF	CITATIONS
199	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie, 2016, 128, 10528-10531.	1.6	28
200	Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries. ACS Omega, 2017, 2, 5601-5610.	1.6	28
201	Long-life lithium-O2 battery achieved by integrating quasi-solid electrolyte and highly active Pt3Co nanowires catalyst. Energy Storage Materials, 2020, 24, 707-713.	9.5	28
202	<i>In situ</i> formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. Journal of Materials Chemistry A, 2020, 8, 23574-23579.	5.2	28
203	Co ₉ S ₈ Nanorods as an Electrocatalyst To Enhance Polysulfide Conversion and Alleviate Passivation in Li–S Batteries under Lean Electrolyte Conditions. ACS Applied Materials & Interfaces, 2020, 12, 21701-21708.	4.0	28
204	Facile synthesis of carbon-mediated porous nanocrystallite anatase TiO 2 for improved sodium insertion capabilities as an anode for sodium-ion batteries. Journal of Power Sources, 2017, 362, 283-290.	4.0	27
205	Electron bridging structure glued yolk-shell hierarchical porous carbon/sulfur composite for high performance Li-S batteries. Electrochimica Acta, 2018, 292, 199-207.	2.6	27
206	Compound-Hierarchical-Sphere LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ : Synthesis, Structure, and Electrochemical Characterization. ACS Applied Materials & Interfaces, 2018, 10, 32120-32127.	4.0	27
207	Oxygenated Nitrogenâ€Doped Microporous Nanocarbon as a Permselective Interlayer for Ultrastable Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1094-1100.	1.7	27
208	Improved Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials Induced by a Facile Polymer Coating for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6205-6213.	2.5	27
209	Strong Interfacial Adhesion between the Li ₂ S Cathode and a Functional Li ₇ P _{2.9} Ce _{0.2} S _{10.9} Cl _{0.3} Solid-State Electrolyte Endowed Long-Term Cycle Stability to All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28270-28280.	4.0	27
210	Maintaining structure and voltage stability of Li-rich cathode materials by green water-soluble binders containing Na+ ions. Journal of Alloys and Compounds, 2019, 811, 152060.	2.8	26
211	Hierarchical Tripleâ€Shelled MnCo ₂ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials for Potassiumâ€Ion Batteries. Small, 2021, 17, e2007597.	5.2	26
212	Anionâ€Doped Cobalt Selenide with Porous Architecture for Highâ€Rate and Flexible Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2100649.	4.6	26
213	Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Interfaces, 2021, 13, 38202-38212.	4.0	25
214	A polypyrrole-supported carbon paper acting as a polysulfide trap for lithium–sulfur batteries. RSC Advances, 2015, 5, 94479-94485.	1.7	24
215	Resolving the Structural Defects of Spent Li _{1â^'} <i>_x</i> CoO ₂ Particles to Directly Reconstruct High Voltage Performance Cathode for Lithiumâ€lon Batteries. Small Methods, 2021, 5, e2100672.	4.6	24
216	Mesoscopic Ti2Nb10O29 cages comprised of nanorod units as high-rate lithium-ion battery anode. Journal of Colloid and Interface Science, 2021, 600, 111-117.	5.0	24

#	Article	IF	CITATIONS
217	Distinctive electrochemical performance of novel Fe-based Li-rich cathode material prepared by molten salt method for lithium-ion batteries. Journal of Energy Chemistry, 2019, 33, 37-45.	7.1	23
218	An Ionic Liquid/Poly(vinylidene fluorideâ€coâ€hexafluoropropylene) Gelâ€Polymer Electrolyte with a Compatible Interface for Sodiumâ€Based Batteries. ChemElectroChem, 2019, 6, 2423-2429.	1.7	23
219	High Pseudocapacitance Boosts Ultrafast, High-Capacity Sodium Storage of 3D Graphene Foam-Encapsulated TiO ₂ Architecture. ACS Applied Materials & Interfaces, 2020, 12, 23939-23950.	4.0	23
220	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Interfaces, 2020, 12, 31411-31418.	4.0	23
221	Synthesis-Microstructure-Performance Relationship of Layered Transition Metal Oxides as Cathode for Rechargeable Sodium Batteries Prepared by High-Temperature Calcination. ACS Applied Materials & Interfaces, 2014, 6, 17176-17183.	4.0	22
222	A Safe Electrolyte with Counterbalance between the Ionic Liquid and Tris(ethylene glycol)dimethyl ether for High Performance Lithium-Sulfur Batteries. Electrochimica Acta, 2015, 184, 356-363.	2.6	22
223	Ionically dispersed Fe(<scp>ii</scp>)–N and Zn(<scp>ii</scp>)–N in porous carbon for acidic oxygen reduction reactions. Chemical Communications, 2017, 53, 11453-11456.	2.2	22
224	Effect of metal ion concentration in precursor solution on structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2. Journal of Alloys and Compounds, 2019, 778, 643-651.	2.8	22
225	Ring-chain synergy in ionic liquid electrolytes for lithium batteries. Chemical Science, 2015, 6, 7274-7283.	3.7	21
226	Three-Dimensional Interfacial Stress Sensor Based on Graphene Foam. IEEE Sensors Journal, 2018, 18, 7956-7963.	2.4	21
227	Stable Conversion Mn ₃ O ₄ Li-Ion Battery Anode Material with Integrated Hierarchical and Core–Shell Structure. ACS Applied Energy Materials, 2019, 2, 5206-5213.	2.5	21
228	Synergy Effect of Trimethyl Borate on Protecting High-Voltage Cathode Materials in Dual-Additive Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 21459-21466.	4.0	21
229	Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. Journal of Power Sources, 2014, 245, 730-738.	4.0	20
230	CF@rGO/PPy-S Hybrid Foam with Paper Window-like Microstructure as Freestanding and Flexible Cathode for the Lithium–Sulfur Battery. ACS Applied Energy Materials, 2019, 2, 4151-4158.	2.5	20
231	Pâ€Doped Ni/NiO Heterostructured Yolk‣hell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage. Small, 2022, 18, e2105897.	5.2	20
232	Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 2018, 132, 85-94.	5.4	19
233	Three-dimensional Li1.2Ni0.2Mn0.6O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 757, 16-23.	2.8	19
234	Insight into effects of divalent cation substitution stabilizing P2-Type layered cathode materials for sodium-ion batteries. Electrochimica Acta, 2021, 368, 137614.	2.6	19

#	Article	IF	CITATIONS
235	Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries. Journal of Power Sources, 2021, 495, 229773.	4.0	19
236	Multidimensional <scp>Co₃O₄</scp> / <scp>NiO</scp> heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
237	A facile approach of introducing DMS into LiODFB–PYR ₁₄ TFSI electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6366-6372.	5.2	18
238	The positive role of (NH ₄) ₃ AlF ₆ coating on Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ oxide as the cathode material for lithium-ion batteries. RSC Advances, 2017, 7, 1191-1199.	1.7	18
239	Simultaneously fabricating homogeneous nanostructured ionic and electronic pathways for layered lithium-rich oxides. Journal of Power Sources, 2018, 402, 499-505.	4.0	18
240	Elektrolyte für wiederaufladbare Lithium‣uftâ€Batterien. Angewandte Chemie, 2020, 132, 2994-3019.	1.6	18
241	A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries. Chinese Journal of Chemical Engineering, 2021, 39, 16-36.	1.7	18
242	Sustainable Recycling of Cathode Scrap towards Highâ€Performance Anode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2022, 12, 2103288.	10.2	18
243	High Sensitivity Flexible Electronic Skin Based on Graphene Film. Sensors, 2019, 19, 794.	2.1	17
244	Sensitivity-Compensated Micro-Pressure Flexible Sensor for Aerospace Vehicle. Sensors, 2019, 19, 72.	2.1	17
245	A novel nanocomposite electrolyte with ultrastable interface boosts long life solid-state lithium metal batteries. Journal of Power Sources, 2021, 484, 229195.	4.0	17
246	Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 681-687.	4.0	17
247	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn–organic batteries. Materials Horizons, 2021, 8, 3124-3132.	6.4	17
248	Closed-loop selective recycling process of spent LiNi Co Mn O2 batteries by thermal-driven conversion. Journal of Hazardous Materials, 2022, 424, 127757.	6.5	17
249	Tailored Carrier Transport Path by Interpenetrating Networks in Cathode Composite for High Performance All-Solid-State Li-SeS2 Batteries. Advanced Fiber Materials, 2022, 4, 487-502.	7.9	17
250	Ultrastable Bioderived Organic Anode Induced by Synergistic Coupling of Binder/Carbon-Network for Advanced Potassium-Ion Storage. Nano Letters, 2022, 22, 4115-4123.	4.5	17
251	The Structureâ^'Activity Relationship and Physicochemical Properties of Acetamide-Based BrÃ,nsted Acid Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 20007-20015.	1.5	16
252	A Novel Proximity Sensor Based on Parallel Plate Capacitance. IEEE Sensors Journal, 2018, 18, 7015-7022.	2.4	15

#	Article	IF	CITATIONS
253	All-iron sodium-ion full-cells assembled via stable porous goethite nanorods with low strain and fast kinetics. Nano Energy, 2019, 60, 294-304.	8.2	14
254	From Black Liquor to Green Energy Resource: Positive Electrode Materials for Li–O ₂ Battery with High Capacity and Long Cycle Life. ACS Applied Materials & Interfaces, 2020, 12, 16521-16530.	4.0	14
255	Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 21127-21137.	4.0	14
256	Vertical Channels Design for Polymer Electrolyte to Enhance Mechanical Strength and Ion Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 42957-42965.	4.0	14
257	From Flowerâ€Like to Spherical Deposition: A GCNT Aerogel Scaffold for Fastâ€Charging Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2102454.	10.2	14
258	Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2109184.	7.8	14
259	Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 942-952.	2.4	14
260	A floral variant of mesoporous carbon as an anode material for high performance sodium and lithium ion batteries. RSC Advances, 2016, 6, 78235-78240.	1.7	13
261	Synergistic Doping for Pseudocapacitance Sites in Alkaline Carbon Supercapacitors. ChemElectroChem, 2018, 5, 84-92.	1.7	13
262	Freestanding Nâ€Doped Carbon Coated CuO Array Anode for Lithiumâ€ion and Sodiumâ€ion Batteries. Energy Technology, 2019, 7, 1900252.	1.8	13
263	Synthesizing LiNi0.8Co0.1Mn0.1O2 with novel shell-pore structure for enhanced rate performance. Journal of Alloys and Compounds, 2019, 789, 736-743.	2.8	13
264	Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion replacement. Frontiers of Chemical Science and Engineering, 2021, 15, 1243-1256.	2.3	13
265	Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution. Transactions of Tianjin University, 2021, 27, 423-433.	3.3	13
266	Local Strong Solvation Electrolyte Tradeâ€Off between Capacity and Cycle Life of Liâ€O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2101831.	7.8	13
267	Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. Science Bulletin, 2012, 57, 4199-4204.	1.7	12
268	Porous carbon supported atomic iron as electrocatalysts for acidic oxygen reduction reaction. Science Bulletin, 2018, 63, 213-215.	4.3	12
269	In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries. Journal of Materials Science, 2019, 54, 9098-9110.	1.7	12
270	Powering lithium–sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Nanoscale, 2021, 13, 16690-16695.	2.8	12

#	Article	IF	CITATIONS
271	Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chemical Engineering Journal, 2022, 427, 130967.	6.6	12
272	Pyridine-grafted nitrogen-doped carbon nanotubes achieving efficient electroreduction of CO ₂ to CO within a wide electrochemical window. Journal of Materials Chemistry A, 2022, 10, 1852-1860.	5.2	12
273	A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties. Chemical Research in Chinese Universities, 2015, 31, 443-446.	1.3	11
274	A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance. Journal of Materials Chemistry A, 2021, 9, 18623-18631.	5.2	11
275	Recovery valuable metals from spent lithium-ion batteries via a low-temperature roasting approach: Thermodynamics and conversion mechanism. Journal of Hazardous Materials Advances, 2021, 1, 100003.	1.2	11
276	Toward Highly Stable Anode for Secondary Batteries: Employing TiO ₂ Shell as Elastic Buffering Marix for FeO <i>_x</i> Nanoparticles. Small, 2022, 18, e2105713.	5.2	11
277	Metal-organic framework derived cobalt phosphide nanoparticles encapsulated within hierarchical hollow carbon superstructure for stable sodium storage. Chemical Engineering Journal, 2022, 438, 134279.	6.6	11
278	Enhancing the Long Cycle Performance of Li–O ₂ Batteries at High Temperatures Using Metal–Organic Framework-Based Electrolytes. ACS Applied Energy Materials, 2022, 5, 7185-7191.	2.5	10
279	A novel synthesis of gadolinium-doped Li3V2(PO4)3/C with excellent rate capacity and cyclability. RSC Advances, 2016, 6, 28624-28632.	1.7	9
280	Gadolinium/chloride co-doping of lithium vanadium phosphate cathodes for lithium-ion batteries. Solid State Ionics, 2017, 304, 65-70.	1.3	9
281	A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. Journal of Power Sources, 2020, 463, 228161.	4.0	9
282	Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano Research, 2022, 15, 3143-3149.	5.8	9
283	Dendriteâ€Free Lithium Anodes with a Metal Organic Frameworkâ€Derived Cakeâ€like TiO ₂ Coating on the Separator. ChemElectroChem, 2020, 7, 2159-2164.	1.7	8
284	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. Small, 2022, 18, e2104390.	5.2	8
285	Imidazolium bromide: A tri-functional additive for rechargeable Li-O2 batteries. Energy Storage Materials, 2022, 49, 401-408.	9.5	8
286	β-Cyclodextrin coated lithium vanadium phosphate as novel cathode material for lithium ion batteries. RSC Advances, 2016, 6, 103364-103371.	1.7	7
287	Reducing the overpotential of an aprotic Li–O ₂ battery using a conductive graphene interlayer. Chemical Communications, 2019, 55, 2102-2105.	2.2	7
288	3-D Interfacial Stress Decoupling Method Based on Graphene Foam. IEEE Transactions on Electron Devices, 2018, 65, 5021-5028.	1.6	6

#	Article	IF	CITATIONS
289	Stable Li/Cu2O composite anodes enabled by a 3D conductive skeleton with lithiophilic nanowire arrays. Journal of Power Sources, 2022, 536, 231374.	4.0	6
290	Hollow NaTi 1.9 Sn 0.1 (PO 4) 3 @C Nanoparticles for Anodes of Sodiumâ€lon Batteries with Superior Rate and Cycling Properties. Energy Technology, 2019, 7, 1900079.	1.8	5
291	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. ACS Applied Energy Materials, 2021, 4, 11878-11885.	2.5	5
292	<scp>Lithium‣ulfur</scp> Batteries at Extreme Temperatures: Challenges, Strategies and Prospects. Energy and Environmental Materials, 2023, 6, .	7.3	5
293	Li-S-Batteries: Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8564-8564.	7.8	4
294	Sun sensor using a nanosatellites solar panels by means of timeâ€division multiplexing. IET Science, Measurement and Technology, 2017, 11, 489-494.	0.9	4
295	Layer by Layer Assemble of Colloid Nanomaterial and Functional Multilayer Films for Energy Storage and Conversion. , 2019, , 255-278.		4
296	Constructing heterostructured Li–Fe–Ni–Mn–O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage. Physical Chemistry Chemical Physics, 2017, 19, 22494-22501.	1.3	3
297	Sodiumâ€lon Batteries: Toward Rapidâ€Charging Sodiumâ€lon Batteries using Hybridâ€Phase Molybdenum Sulfide Selenideâ€Based Anodes (Adv. Mater. 40/2020). Advanced Materials, 2020, 32, 2070302.	11.1	3
298	Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation–Intercalation Cathode Material. Small, 2020, 16, 1906025.	5.2	2
299	Advanced Li–S Batteries Enabled by a Biomimetic Polysulfide-Engulfing Net. ACS Applied Materials & Interfaces, 2021, 13, 23811-23821.	4.0	2
300	Recycling of Rechargeable Batteries: Insights from a Bibliometricsâ€Based Analysis of Emerging Publishing and Research Trends. Advanced Energy and Sustainability Research, 2022, 3, 2100153.	2.8	1