Jianshe Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5745872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food oral processing—A review. Food Hydrocolloids, 2009, 23, 1-25.	10.7	625
2	Development of International Terminology and Definitions for Texture-Modified Foods and Thickened Fluids Used in Dysphagia Management: The IDDSI Framework. Dysphagia, 2017, 32, 293-314.	1.8	545
3	The Influence of Food Texture and Liquid Consistency Modification on Swallowing Physiology and Function: A Systematic Review. Dysphagia, 2015, 30, 2-26.	1.8	414
4	Effects of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Soy Protein Isolates and on the Emulsifying Properties of Hydrolysates. Journal of Agricultural and Food Chemistry, 2011, 59, 2600-2609.	5.2	277
5	The Need for International Terminology and Definitions for Texture-Modified Foods and Thickened Liquids Used in Dysphagia Management: Foundations of a Global Initiative. Current Physical Medicine and Rehabilitation Reports, 2013, 1, 280-291.	0.8	265
6	Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science and Technology, 2012, 25, 4-12.	15.1	258
7	HEAT-SET WHEY PROTEIN EMULSION GELS: ROLE OF ACTIVE AND INACTIVE FILLER PARTICLES. Journal of Dispersion Science and Technology, 1999, 20, 197-213.	2.4	169
8	Applications of tribology in studying food oral processing and texture perception. Food Research International, 2013, 54, 1627-1635.	6.2	164
9	Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloids, 2011, 25, 887-897.	10.7	143
10	Sensory attributes of edible insects and insect-based foods – Future outlooks for enhancing consumer appeal. Trends in Food Science and Technology, 2020, 95, 141-148.	15.1	138
11	Food-saliva interactions: Mechanisms and implications. Trends in Food Science and Technology, 2017, 66, 125-134.	15.1	137
12	Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 2020, 3, 166-172.	5.8	134
13	ACOUSTIC ENVELOPE DETECTOR FOR CRISPNESS ASSESSMENT OF BISCUITS. Journal of Texture Studies, 2005, 36, 139-156.	2.5	133
14	The determining role of bolus rheology in triggering a swallowing. Food Hydrocolloids, 2011, 25, 325-332.	10.7	133
15	Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry, 2008, 107, 929-938.	8.2	132
16	VISCOELASTIC PROPERTIES OF HEAT-SET WHEY PROTEIN EMULSION GELS. Journal of Texture Studies, 1998, 29, 285-304.	2.5	126
17	Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids and Surfaces B: Biointerfaces, 1999, 12, 373-381.	5.0	121
18	Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Research International, 2019, 116, 697-706.	6.2	120

#	Article	IF	CITATIONS
19	Viscoelastic Properties of Protein-Stabilized Emulsions:Â Effect of Proteinâ^'Surfactant Interactions. Journal of Agricultural and Food Chemistry, 1998, 46, 91-97.	5.2	107
20	Food oral processing: Mechanisms and implications of food oral destruction. Trends in Food Science and Technology, 2015, 45, 222-228.	15.1	99
21	Food oral processing: Some important underpinning principles of eating and sensory perception. Food Structure, 2014, 1, 91-105.	4.5	98
22	Time-dependent competitive adsorption of milk proteins and surfactants in oil-in-water emulsions. Journal of the Science of Food and Agriculture, 1993, 62, 283-289.	3.5	92
23	"Oral―Tribological Study on the Astringency Sensation of Red Wines. Journal of Texture Studies, 2016, 47, 392-402.	2.5	91
24	Mechanical Properties and Microstructure of Heat-set Whey Protein Emulsion Gels: Effect of Emulsifiers. LWT - Food Science and Technology, 2000, 33, 299-307.	5.2	76
25	Improved Low pH Emulsification Properties of Glycated Peanut Protein Isolate by Ultrasound Maillard Reaction. Journal of Agricultural and Food Chemistry, 2016, 64, 5531-5538.	5.2	73
26	Smoothness as a tactile percept: Correlating â€~oral' tribology with sensory measurements. Food Hydrocolloids, 2019, 87, 38-47.	10.7	73
27	Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part II: Printing performance, thermal, tribological, and dynamic sensory characterization of printed objects. Food Hydrocolloids, 2021, 121, 107054.	10.7	73
28	RHEOLOGY OF ACID-INDUCED SODIUM CASEINATE STABILIZED EMULSION GELS. Journal of Texture Studies, 1999, 30, 377-396.	2.5	72
29	Food oral processing: Recent developments and challenges. Current Opinion in Colloid and Interface Science, 2017, 28, 22-30.	7.4	72
30	Influences of food hardness on the particle size distribution of food boluses. Archives of Oral Biology, 2013, 58, 293-298.	1.8	69
31	Studies of the Oral Capabilities in Relation to Bolus Manipulations and the Ease of Initiating Bolus Flow. Journal of Texture Studies, 2014, 45, 1-12.	2.5	68
32	Consensus on the terminologies and methodologies for masticatory assessment. Journal of Oral Rehabilitation, 2021, 48, 745-761.	3.0	68
33	Protein/surfactant interfacial interactions Part 3. Competitive adsorption of protein + surfactant in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 77-85.	4.7	61
34	Development of a simple model device for in vitro gastric digestion investigation. Food and Function, 2011, 2, 174.	4.6	61
35	Lubrication studies of fluid food using a simple experimental set up. Food Hydrocolloids, 2014, 42, 100-105.	10.7	61
36	Release of updated International Dysphagia Diet Standardisation Initiative Framework (IDDSI 2.0). Journal of Texture Studies, 2020, 51, 195-196.	2.5	61

#	Article	IF	CITATIONS
37	Cell Wall Pectic Arabinans Influence the Mechanical Properties of Arabidopsis thaliana Inflorescence Stems and Their Response to Mechanical Stress. Plant and Cell Physiology, 2013, 54, 1278-1288.	3.1	60
38	Oral tribology: Providing insight into oral processing of food colloids. Food Hydrocolloids, 2021, 117, 106635.	10.7	60
39	Mechanisms underlying astringency: introduction to an oral tribology approach. Journal Physics D: Applied Physics, 2016, 49, 104003.	2.8	58
40	Surface shear viscosity and protein-surfactant interactions in mixed protein films adsorbed at the oil-water interface. Food Hydrocolloids, 1995, 9, 35-42.	10.7	57
41	The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food and Function, 2017, 8, 545-553.	4.6	53
42	A quantitative assessment of the eating capability in the elderly individuals. Physiology and Behavior, 2015, 147, 274-281.	2.1	52
43	Protein/surfactant interfacial interactions part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100, 255-265.	4.7	49
44	Texture and texture assessment of thickened fluids and textureâ€modified food for dysphagia management. Journal of Texture Studies, 2021, 52, 4-15.	2.5	49
45	Protein/surfactant interfacial interactions paet 2. Electrophoretic mobility of mixed protein + surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100, 267-277.	4.7	45
46	Measuring eating capability, liking and difficulty perception of older adults: A textural consideration. Food Quality and Preference, 2016, 53, 47-56.	4.6	45
47	Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid and Interface Science, 2021, 56, 101508.	7.4	45
48	Surface Texture of Foods: Perception and Characterization. Critical Reviews in Food Science and Nutrition, 2007, 47, 583-598.	10.3	44
49	Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures. Food Hydrocolloids, 2007, 21, 716-725.	10.7	43
50	Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids, 2021, 113, 106519.	10.7	43
51	The eating capability: Constituents and assessments. Food Quality and Preference, 2016, 48, 345-358.	4.6	41
52	Food oral breaking and the determining role of tongue muscle strength. Food Research International, 2015, 67, 331-337.	6.2	40
53	Improved emulsifying capabilities of hydrolysates of soy protein isolate pretreated with high pressure microfluidization. LWT - Food Science and Technology, 2016, 69, 1-8.	5.2	40
54	Clinical applications of IDDSI framework for texture recommendation for dysphagia patients. Journal of Texture Studies, 2018, 49, 2-10.	2.5	40

#	Article	IF	CITATIONS
55	The Importance of Extensional Rheology in Bolus Control during Swallowing. Scientific Reports, 2019, 9, 16106.	3.3	40
56	Perception of creaminess in foods. Journal of Texture Studies, 2020, 51, 375-388.	2.5	39
57	On the temperature reversibility of the viscoelasticity of acid-induced sodium caseinate emulsion gels. International Dairy Journal, 2000, 10, 541-549.	3.0	37
58	Effect of monoglycerides and diglycerol-esters on viscoelasticity of heat-set whey protein emulsion gels. International Journal of Food Science and Technology, 1999, 34, 493-501.	2.7	35
59	New Approach to Food Difficulty Perception: Food Structure, Food Oral Processing and Individual's Physical Strength. Journal of Texture Studies, 2016, 47, 413-422.	2.5	35
60	Surface energy investigation of chocolate adhesion to solid mould materials. Journal of Food Engineering, 2009, 92, 217-225.	5.2	34
61	Multimodal mechanisms of food creaminess sensation. Food and Function, 2012, 3, 1265.	4.6	32
62	Development of model mouth for food oral processing studies: Present challenges and scopes. Innovative Food Science and Emerging Technologies, 2020, 66, 102524.	5.6	31
63	Extensional and shear rheology of a food hydrocolloid. Food Hydrocolloids, 2018, 74, 296-306.	10.7	30
64	Saliva could act as an emulsifier during oral processing of oil/fat. Journal of Texture Studies, 2019, 50, 83-89.	2.5	30
65	Surface Structure Smoothing Effect of Polysaccharide on a Heat-Set Protein Particle Gel. Langmuir, 2006, 22, 8873-8880.	3.5	29
66	APPLICATION OF SURFACE FRICTION MEASUREMENTS FOR SURFACE CHARACTERIZATION OF HEATâ€6ET WHEY PROTEIN GELS. Journal of Texture Studies, 2004, 35, 493-510.	2.5	27
67	Tactile Sensitivity and Capability of Softâ€Solid Texture Discrimination. Journal of Texture Studies, 2015, 46, 429-439.	2.5	27
68	Steric stabilising properties of hydrophobically modified starch: Amylose vs. amylopectin. Food Hydrocolloids, 2016, 58, 364-377.	10.7	27
69	Determining chewing efficiency using a solid test food and considering all phases of mastication. Archives of Oral Biology, 2018, 91, 63-77.	1.8	26
70	Extensional and shear rheology of okra hydrocolloid–saliva mixtures. Food Research International, 2018, 106, 204-212.	6.2	26
71	How are macronutrient intake, BMI, ethnicity, age, and gender related to the composition of unstimulated saliva? A case study. Journal of Texture Studies, 2019, 50, 53-61.	2.5	25
72	Surface topography of heat-set whey protein gels by confocal laser scanning microscopy. Food Hydrocolloids, 2006, 20, 468-474.	10.7	24

#	Article	IF	CITATIONS
73	Wine astringency: more than just tannin–protein interactions. Journal of the Science of Food and Agriculture, 2022, 102, 1771-1781.	3.5	24
74	Application of probe tensile method for quantitative characterisation of the stickiness of fluid foods. Journal of Food Engineering, 2008, 87, 281-290.	5.2	23
75	Human capability in the perception of extensional and shear viscosity. Journal of Texture Studies, 2017, 48, 463-469.	2.5	23
76	Impact of capsaicin on aroma release: in vitro and in vivo analysis. Food Research International, 2020, 133, 109197.	6.2	23
77	Evaluation of the Sensory Correlation between Touch Sensitivity and the Capacity to Discriminate Viscosity. Journal of Sensory Studies, 2015, 30, 98-107.	1.6	22
78	Food oral management: physiology and objective assessment. Current Opinion in Food Science, 2016, 9, 11-20.	8.0	20
79	Human roughness perception and possible factors effecting roughness sensation. Journal of Texture Studies, 2017, 48, 181-192.	2.5	20
80	It is important to differentiate sensory property from the material property. Trends in Food Science and Technology, 2020, 96, 268-270.	15.1	20
81	Effect of amylose and amylopectin content on the colloidal behaviour of emulsions stabilised by OSA-Modified starch. Food Hydrocolloids, 2021, 111, 106363.	10.7	20
82	Chocolate demoulding and effects of processing conditions. Journal of Food Engineering, 2010, 98, 133-140.	5.2	19
83	Shear and extensional rheological characterisation of mucin solutions. Colloids and Surfaces B: Biointerfaces, 2018, 171, 614-621.	5.0	19
84	Surface properties of adsorbed salivary components at a solid hydrophobic surface using a quartz crystal microbalance with dissipation (QCM–D). Food Hydrocolloids, 2019, 97, 105195.	10.7	19
85	Topographic study of human tongue in relation to oral tribology. Food Hydrocolloids, 2019, 95, 116-121.	10.7	19
86	A new design of soft texture analyzer tribometer (STAT) for in vitro oral lubrication study. Food Hydrocolloids, 2021, 110, 106146.	10.7	19
87	Xanthan gum â~' mucin complexation: Molecular interactions, thermodynamics, and rheological analysis. Food Hydrocolloids, 2021, 114, 106579.	10.7	19
88	Spectral analysis of the stickâ€slip phenomenon in "oral―tribological texture evaluation. Journal of Texture Studies, 2017, 48, 318-334.	2.5	18
89	Rheology and Tribology Study of the Sensory Perception of Oral Care Products. Biotribology, 2017, 10, 17-25.	1.9	18
90	A novel experimental set up for in situ oral lubrication measurements. Food Hydrocolloids, 2019, 95, 396-405.	10.7	18

#	Article	IF	CITATIONS
91	Filament stretchability of biopolymer fluids and controlling factors. Food Hydrocolloids, 2009, 23, 1602-1609.	10.7	17
92	Cohesiveness visual evaluation of thickened fluids. Food Hydrocolloids, 2020, 101, 105522.	10.7	17
93	Enhanced oral oil release and mouthfeel perception of starch emulsion gels. Food Research International, 2021, 144, 110356.	6.2	17
94	"Oral―tribology study on saliva-tea compound mixtures: Correlation between sweet aftertaste (Huigan) perception and friction coefficient. Food Research International, 2019, 125, 108642.	6.2	15
95	Impact of capsaicin on aroma release and perception from flavoured solutions. LWT - Food Science and Technology, 2021, 138, 110613.	5.2	15
96	The starch hydrolysis and aroma retention caused by salivary α-amylase during oral processing of food. Current Opinion in Food Science, 2022, 43, 237-245.	8.0	15
97	Dynamic colloidal interactions between protein-stabilised particles — experiment and simulation. Physical Chemistry Chemical Physics, 2000, 2, 3861-3869.	2.8	14
98	A Comparison Between Young and Elderly Adults Investigating the Manual and Oral Capabilities During the Eating Process. Journal of Texture Studies, 2016, 47, 361-372.	2.5	14
99	Oral behaviour of emulsions stabilized by mixed monolayer. Food Research International, 2019, 125, 108603.	6.2	14
100	Oral physiological characteristics among Chinese subjects in the eastern region of China. Archives of Oral Biology, 2019, 108, 104539.	1.8	14
101	The application of diffusing wave spectroscopy (DWS) in soft foods. Food Hydrocolloids, 2019, 96, 671-680.	10.7	14
102	Saliva and Food Oral Processing. Journal of Texture Studies, 2019, 50, 4-5.	2.5	14
103	Oral physiological and biochemical characteristics of different dietary habit groups II: Comparison of oral salivary biochemical properties of Chinese Mongolian and Han Young adults. Food Research International, 2020, 136, 109465.	6.2	14
104	Current Perspectives on Food Oral Processing. Annual Review of Food Science and Technology, 2022, 13, 167-192.	9.9	14
105	Lubrication and Sensory Properties of Emulsion Systems and Effects of Droplet Size Distribution. Foods, 2021, 10, 3024.	4.3	14
106	Extensional and shear rheology of okra polysaccharides in the presence of artificial saliva. Npj Science of Food, 2018, 2, 20.	5.5	13
107	Manipulating oral behaviour of food emulsions using different emulsifiers. International Journal of Food Science and Technology, 2019, 54, 2408-2415.	2.7	13
108	Interactions between mucin and okra gum during pH cycling. Food Hydrocolloids, 2019, 95, 1-9.	10.7	13

#	Article	IF	CITATIONS
109	Rheological investigations of beta glucan functionality: Interactions with mucin. Food Hydrocolloids, 2019, 87, 180-186.	10.7	12
110	Sensory perception of guar gum-induced thickening: Correlations with rheological analysis. Food Hydrocolloids, 2021, 111, 106246.	10.7	12
111	Development of a simulated tongue substrate for in vitro soft "oral―tribology study. Food Hydrocolloids, 2021, 120, 106991.	10.7	12
112	The safety and efficacy of xanthan gum-based thickeners and their effect in modifying bolus rheology in the therapeutic medical management of dysphagia. Food Hydrocolloids for Health, 2021, 1, 100038.	3.9	12
113	Effect of tongue temperature on oral tactile sensitivity and viscosity discrimination. Food Hydrocolloids, 2020, 102, 105578.	10.7	11
114	Molecular interactions between gelatin and mucin: Phase behaviour, thermodynamics and rheological studies. Food Hydrocolloids, 2020, 102, 105585.	10.7	11
115	Particle size distributions following chewing: Transformation of two-dimensional outcome from optical scanning to volume outcome from sieving. Journal of Food Engineering, 2021, 309, 110663.	5.2	11
116	Simulation and Experiments on Colloidal Particle Capture in a Shear Field. Langmuir, 2000, 16, 9784-9791.	3.5	10
117	Sticking of protein-coated particles in a shear field. Colloids and Surfaces B: Biointerfaces, 2001, 22, 237-244.	5.0	10
118	Effect of storage temperature and relative humidity on long-term colloidal stability of reconstitutable emulsions stabilised by hydrophobically modified starch. Food Hydrocolloids, 2019, 95, 62-75.	10.7	10
119	A non-invasive measurement of tongue surface temperature. Food Research International, 2019, 116, 499-507.	6.2	10
120	Biologically-relevant interactions, phase separations and thermodynamics of chitosan–mucin binary systems. Process Biochemistry, 2020, 94, 152-163.	3.7	10
121	Analysis of Pungency Sensation Effects from an Oral Processing, Sensorial and Emotions Detection Perspective—Case Study with Grilled Pork Meat. Applied Sciences (Switzerland), 2021, 11, 10459.	2.5	10
122	Biting force and tongue muscle strength as useful indicators for eating and swallowing capability assessment among elderly patients. Food Science and Human Wellness, 2019, 8, 149-155.	4.9	9
123	Chemical physics of whey protein isolate in the presence of mucin: From macromolecular interactions to functionality. International Journal of Biological Macromolecules, 2020, 143, 573-581.	7.5	9
124	The Stevens law and the derivation of sensory perception. Journal of Future Foods, 2021, 1, 82-87.	4.7	9
125	Instrumental texture assessment of IDDSI texture levels for dysphagia management. Part 1: Thickened fluids. Journal of Texture Studies, 2022, 53, 609-616.	2.5	9
126	Food for Elderly: Challenges and Opportunities. Journal of Texture Studies, 2016, 47, 255-256.	2.5	8

#	Article	IF	CITATIONS
127	Comparison of oral physiological and salivary rheological properties of Chinese Mongolian and Han young adults. Archives of Oral Biology, 2021, 123, 105033.	1.8	8
128	Astringency subâ€qualities of red wines and the influence of wine–saliva aggregates. International Journal of Food Science and Technology, 2021, 56, 5382-5394.	2.7	8
129	Development of a ball back extrusion technique for texture analysis of fluid food. Journal of Texture Studies, 2021, 52, 461-469.	2.5	8
130	Instrumental texture assessment of <scp>IDDSI</scp> texture levels for dysphagia management. Part 2: Texture modified foods. Journal of Texture Studies, 2022, 53, 617-628.	2.5	8
131	The Influence of Initial Breakage on Size Reduction during Habitual Chewing of a Solid Test Food. Archives of Oral Biology, 2020, 118, 104852.	1.8	7
132	Rheological study of tannin and protein interactions based on model systems. Journal of Texture Studies, 2020, 51, 585-592.	2.5	7
133	Eating Capability Assessments in Elderly Populations. , 2017, , 83-98.		6
134	Sensory discrimination of the viscosity of thickened liquids for dysphagia management. Journal of Sensory Studies, 2018, 33, e12464.	1.6	6
135	Locking up of food between posterior teeth and its influence on chewing efficiency. Archives of Oral Biology, 2019, 107, 104524.	1.8	6
136	Contribution analysis of sensory cues to oil/fat perception. Journal of Sensory Studies, 2020, 35, e12566.	1.6	6
137	<i>In situ</i> oral lubrication and smoothness sensory perception influenced by tongue surface roughness. Journal of the Science of Food and Agriculture, 2022, 102, 132-138.	3.5	6
138	Sensory and Oral Processing of Semisolid Foods. Food Engineering Series, 2019, , 231-247.	0.7	6
139	Optimizing a determination of chewing efficiency using a solid test food. Journal of Texture Studies, 2020, 51, 169-184.	2.5	5
140	Comparison of and relationships between oral physiology, anatomy and food oral processing behavior of Chinese (Asian) and Dutch (Caucasian) consumers differing in age. Physiology and Behavior, 2021, 232, 113284.	2.1	5
141	The influence of flavor release from a solid test food, and its Time Intensity (TI) scoring, on chewing efficiency. Food Quality and Preference, 2021, 93, 104247.	4.6	5
142	Buffering capacity of saliva influences the perception of acid-related sensory properties. Food Quality and Preference, 2022, 97, 104454.	4.6	4
143	In vitro stability study of saliva emulsions: The impact of time, calcium ion and pH. Food Hydrocolloids, 2022, 125, 107390.	10.7	4
144	Numerical Studies of Transport Properties in Heterogeneous Food Systems. Applied Rheology, 2006, 16, 275-286.	5.2	3

#	Article	IF	CITATIONS
145	A novel technique for in situ measurements of stress development within a drying film. Journal of Food Engineering, 2009, 92, 383-388.	5.2	3
146	Rheology and tribology assessment of foods. , 2020, , 697-715.		3
147	Tea compound-saliva interactions and their correlations with sweet aftertaste. Npj Science of Food, 2022, 6, 13.	5.5	3
148	Variations in oral microbiota and salivary proteomics reveal distinct patterns in polysensitized individuals. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1899-1902.	5.7	3
149	Food texture and texture modification for dysphagia management. Journal of Texture Studies, 2021, 52, 538-539.	2.5	3
150	Kinetics of Food Biopolymer Film Dehydration: Experimental Studies and Mathematical Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 7391-7402.	3.7	2
151	The 4th international conference on Food Oral Processing, July 2016. Journal of Texture Studies, 2017, 48, 269-270.	2.5	2
152	The fifth international conference on Food Oral Processing, University of Nottingham, July 2018. Journal of Texture Studies, 2019, 50, 193-193.	2.5	2
153	Recognition of the great successes of food texture research. Journal of Texture Studies, 2019, 50, 187-192.	2.5	2
154	From tastes good to mouthâ€feels good: A remark for the 50 years success of the Journal of Texture Studies. Journal of Texture Studies, 2020, 51, 5-6.	2.5	2
155	The role of capsaicin stimulation on the physicochemical properties of saliva and aroma release in model aqueous and oil systems. Food Chemistry, 2022, 386, 132824.	8.2	2
156	Mapping of β-lactoglobulin â^' mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocolloids, 2022, 129, 107640.	10.7	2
157	The 2nd International Conference on Food Oral Processing – Physics, Physiology, and Psychology of Eating, <scp>J</scp> uly 2012. Journal of Texture Studies, 2013, 44, 333-333.	2.5	1
158	The 3rd International Conference on Food Oral Processing – Physics, Physiology, and Psychology of Eating, <scp>J</scp> uly 2014. Journal of Texture Studies, 2015, 46, 121-121.	2.5	1
159	Integration to Continuous Success. Journal of Texture Studies, 2015, 46, 2-2.	2.5	1
160	Objective and Subjective Aspects of Food Oral Texture Assessment. , 2016, , .		1
161	Rheology and machining performance of waterborne biopolymer labelling adhesives. Journal of Adhesion Science and Technology, 2003, 17, 409-421.	2.6	0
162	INTERNATIONAL CONFERENCE ON FOOD ORAL PROCESSING - PHYSICS, PHYSIOLOGY, AND PSYCHOLOGY OF EATING, JULY 2010. Journal of Texture Studies, 2011, 42, 81-81.	2.5	0

#	Article	IF	CITATIONS
163	Alina Surmacka Szczesniak. Journal of Texture Studies, 2018, 49, 139-139.	2.5	0
164	Malcolm Bourne. Journal of Texture Studies, 2018, 49, 140-140.	2.5	0
165	Food Sensory Perception Influenced by Structure and/or Food–Saliva Interactions. , 2019, , 154-157.		Ο
166	Oral Processing of Lipids. , 2021, , 67-88.		0
167	Tribological and Sensory Properties. , 2021, , 245-266.		0