S Senthilarasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5745519/publications.pdf Version: 2024-02-01

S SENTHILADASI

#	Article	IF	CITATIONS
1	Employing CdS nanoparticles as an adsorbent for the removal of different dosages of hexavalent Cr (VI) from aqueous solution. Materials Letters, 2022, 311, 131602.	1.3	3
2	High Open-Circuit Voltage in Double Perovskite Oxide A2NdSbO6 (A = Ba, Sr) Photoanode-Based Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2022, 51, 4281-4287.	1.0	3
3	Morphology modulated brookite TiO2 and BaSnO3 as alternative electron transport materials for enhanced performance of carbon perovskite solar cells. Chemical Engineering Journal, 2022, 446, 137378.	6.6	20
4	Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system. Renewable and Sustainable Energy Reviews, 2021, 138, 110517.	8.2	37
5	Experimental and numerical study on the effect of multiple phase change materials thermal energy storage, 2021, 36, 102226.	3.9	27
6	Nanostructured perovskite oxides for dye-sensitized solar cells. Journal Physics D: Applied Physics, 2021, 54, 493001.	1.3	6
7	Intriguing CeO2–TiO2 hybrid nanostructured photoanode resulting up to 46% efficiency enhancement for dye-sensitized solar cells. Materials Chemistry and Physics, 2021, 272, 125036.	2.0	9
8	A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 2020, 13, 2526-2557.	2.3	150
9	Thermal performance of semitransparent CdTe BIPV window at temperate climate. Solar Energy, 2020, 195, 536-543.	2.9	77
10	Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Solar Energy, 2020, 195, 185-193.	2.9	109
11	Effect of Nafion loading and the novel flow field designs on innovative anode electrocatalyst for improved Direct Methanol Fuel cells performance. Materials Letters, 2020, 276, 128222.	1.3	8
12	Effect of using an infrared filter on the performance of a silicon solar cell for an ultra-high concentrator photovoltaic system. Materials Letters, 2020, 277, 128332.	1.3	15
13	Optical losses and durability of flawed Fresnel lenses for concentrated photovoltaic application. Materials Letters, 2020, 275, 128145.	1.3	9
14	Highly conductive double perovskite oxides A2LuTaO6 (AÂ=ÂBa, Sr, Ca) as promising photoanode material for dye sensitized solar cells. Materials Letters, 2020, 276, 128220.	1.3	15
15	Impact of different light induced effect on organic hole-transporting layer in perovskite solar cells. Materials Letters, 2020, 268, 127568.	1.3	12
16	Synergistic effect of nanoflower-like CdS for removal of highly toxic aqueous Cr(VI). Materials Letters, 2020, 270, 127734.	1.3	13
17	An analytical indoor experimental study on the effect of soiling on PV, focusing on dust properties and PV surface material. Solar Energy, 2020, 203, 46-68.	2.9	101
18	Indoor and outdoor characterization of concentrating photovoltaic attached to multi-layered microchannel heat sink. Solar Energy, 2020, 202, 55-72.	2.9	23

S SENTHILARASU

#	Article	IF	CITATIONS
19	Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes. Scientific Reports, 2020, 10, 6835.	1.6	38
20	Methods of estimations of the band gap for kesterite Cu2ZnSnS(Se)4. Materials Today: Proceedings, 2020, 33, 2495-2498.	0.9	1
21	Evaluation of concentrating photovoltaic performance under different homogeniser materials. Materials Letters, 2019, 241, 219-222.	1.3	4
22	Evaluation of solar factor using spectral analysis for CdTe photovoltaic glazing. Materials Letters, 2019, 237, 332-335.	1.3	26
23	Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application. Energies, 2019, 12, 122.	1.6	31
24	Jet-nebulizer-spray coated copper zinc tin sulphide film for low cost platinum-free electrocatalyst in solar cells. Materials Letters, 2018, 220, 122-125.	1.3	14
25	Perforated BaSnO ₃ Nanorods Exhibiting Enhanced Efficiency in Dye Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 3299-3310.	3.2	42
26	Nickel sulphide-carbon composite hole transporting material for (CH3NH3PbI3) planar heterojunction perovskite solar cell. Materials Letters, 2018, 221, 283-288.	1.3	26
27	Charge transfer mechanics in transparent dye-sensitised solar cells under low concentration. Materials Letters, 2018, 222, 78-81.	1.3	9
28	Electricity enhancement and thermal energy production from concentrated photovoltaic integrated with a 3-layered stacked micro-channel heat sink. AIP Conference Proceedings, 2018, , .	0.3	4
29	Conjugate refractive–reflective based building integrated photovoltaic system. Materials Letters, 2018, 228, 25-28.	1.3	7
30	A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell. Solar Energy, 2018, 169, 457-467.	2.9	55
31	The Performance of CH3NH3PbI3 - Nanoparticles based – Perovskite Solar Cells Fabricated by Facile Powder press Technique. Materials Research Bulletin, 2018, 108, 61-72.	2.7	17
32	Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells. AIP Conference Proceedings, 2017, , .	0.3	15
33	Conjugate refractive–reflective homogeniser in a 500× Cassegrain concentrator: design and limits. IET Renewable Power Generation, 2016, 10, 440-447.	1.7	8
34	Theoretical investigation considering manufacturing errors of a high concentrating photovoltaic of cassegrain design and its experimental validation. Solar Energy, 2016, 131, 235-245.	2.9	38
35	Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews, 2016, 60, 394-407.	8.2	220