
Deepak Kumar Dubey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5745426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hole-transporting materials for organic light-emitting diodes: an overview. Journal of Materials Chemistry C, 2019, 7, 7144-7158.	2.7	166
2	Approaches for Long Lifetime Organic Light Emitting Diodes. Advanced Science, 2021, 8, 2002254.	5.6	134
3	A new molecular design based on hybridized local and charge transfer fluorescence for highly efficient (>6%) deep-blue organic light emitting diodes. Chemical Communications, 2017, 53, 11802-11805.	2.2	75
4	Role of Molecular Orbital Energy Levels in OLED Performance. Scientific Reports, 2020, 10, 9915.	1.6	61
5	Molecule-based monochromatic and polychromatic OLEDs with wet-process feasibility. Journal of Materials Chemistry C, 2018, 6, 11492-11518.	2.7	52
6	Multi-substituted deep-blue emitting carbazoles: a comparative study on photophysical and electroluminescence characteristics. Journal of Materials Chemistry C, 2017, 5, 709-726.	2.7	47
7	Synthesis, photophysical, theoretical and electroluminescence study of triphenylamine-imidazole based blue fluorophores for solution-processed organic light emitting diodes. Dyes and Pigments, 2019, 160, 944-956.	2.0	46
8	Tuning the Photophysical and Electroluminescence Properties in Asymmetrically Tetrasubstituted Bipolar Carbazoles by Functional Group Disposition. ACS Applied Materials & Interfaces, 2018, 10, 24013-24027.	4.0	45
9	Room temperature discotic liquid crystalline triphenylene-pentaalkynylbenzene dyads as an emitter in blue OLEDs and their charge transfer complexes with ambipolar charge transport behaviour. Journal of Materials Chemistry C, 2019, 7, 5724-5738.	2.7	42
10	Room-Temperature Columnar Liquid Crystals as Efficient Pure Deep-Blue Emitters in Organic Light-Emitting Diodes with an External Quantum Efficiency of 4.0%. ACS Applied Materials & Interfaces, 2019, 11, 8291-8300.	4.0	41
11	Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Advances, 2016, 6, 22852-22867.	1.7	40
12	Solution process feasible highly efficient white organic light emitting diode. Organic Electronics, 2019, 69, 232-240.	1.4	40
13	Efficient solution-processed deep-blue CIE _y â~ (0.05) and pure-white CIE _{x,y} â~ (0.34,) ⁻ Chemistry C, 2021, 9, 4935-4947.	[j ETQq1] 2.7	l 0.784314 r 33
14	Room temperature perylene based columnar liquid crystals as solid-state fluorescent emitters in solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 12485-12494.	2.7	31
15	Blue Luminescent Organic Light Emitting Diode Devices of a New Class of Star-Shaped Columnar Mesogens Exhibiting l€â€"ï€ Driven Supergelation. Journal of Physical Chemistry C, 2018, 122, 23659-23674.	1.5	30
16	Deepâ€Blue OLED Fabrication from Heptazine Columnar Liquid Crystal Based AIEâ€Active Skyâ€Blue Emitter. ChemistrySelect, 2018, 3, 7771-7777.	0.7	27
17	Efficient near ultraviolet emissive (CIE _y < 0.06) organic light-emitting diodes based on phenanthroimidazole–alkyl spacer–carbazole fluorophores: experimental and theoretical investigation. Journal of Materials Chemistry C, 2020, 8, 16834-16844.	2.7	27
18	Triphenylamine-imidazole-based luminophores for deep-blue organic light-emitting diodes: experimental and theoretical investigations. Materials Advances, 2020, 1, 666-679.	2.6	27

#	Article	IF	CITATIONS
19	Near UV/Deepâ€Blue Phenanthroimidazoleâ€Based Luminophores for Organic Lightâ€Emitting Diodes: Experimental and Theoretical Investigation. ChemistrySelect, 2019, 4, 6458-6468.	0.7	24
20	Tuning photophysical and electroluminescent properties of phenanthroimidazole decorated carbazoles with donor and acceptor units: Beneficial role of cyano substitution. Dyes and Pigments, 2021, 184, 108830.	2.0	24
21	Enabling a 6.5% External Quantum Efficiency Deep-Blue Organic Light-Emitting Diode with a Solution-Processable Carbazole-Based Emitter. Journal of Physical Chemistry C, 2018, 122, 24295-24303.	1.5	23
22	Synthesis of Solution-Processable Donor–Acceptor Pyranone Dyads for White Organic Light-Emitting Devices. Journal of Organic Chemistry, 2019, 84, 7674-7684.	1.7	22
23	Novel imidazole-alkyl spacer-carbazole based fluorophores for deep-blue organic light emitting diodes: Experimental and theoretical investigation. Dyes and Pigments, 2021, 185, 108853.	2.0	22
24	High-Throughput Virtual Screening of Host Materials and Rational Device Engineering for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 26204-26217.	4.0	22
25	Fluorene based amorphous hole transporting materials for solution processed organic light-emitting diodes. Organic Electronics, 2020, 79, 105633.	1.4	20
26	Highly twisted tetra-N-phenylbenzidine-phenanthroimidazole based derivatives for blue organic light emitting diodes: Experimental and theoretical investigation. Organic Electronics, 2018, 62, 419-428.	1.4	19
27	A thermally cross-linkable hole-transporting small-molecule for efficient solution-processed organic light emitting diodes. Organic Electronics, 2019, 73, 94-101.	1.4	18
28	Room-Temperature Columnar Liquid Crystalline Materials Based on Pyrazino[2,3-g]quinoxaline for Bright Green Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2019, 1, 1959-1969.	2.0	17
29	Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter. Japanese Journal of Applied Physics, 2018, 57, 04FL08.	0.8	15
30	Simple-structured efficient white organic light emitting diode via solution process. Microelectronics Reliability, 2018, 83, 293-296.	0.9	15
31	Through Positional Isomerism: Impact of Molecular Composition on Enhanced Triplet Harvest for Solution-Processed OLED Efficiency Improvement. ACS Applied Electronic Materials, 2021, 3, 2317-2332.	2.0	14
32	Crosslinkable hole-transporting small molecule as a mixed host for efficient solution-processed red organic light emitting diodes. Thin Solid Films, 2018, 660, 956-960.	0.8	12
33	Vinyl-Linked Cyanocarbazole-Based Emitters: Effect of Conjugation and Terminal Chromophores on the Photophysical and Electroluminescent Properties. ACS Omega, 2018, 3, 16477-16488.	1.6	12
34	Plausible degradation mechanisms in organic light-emitting diodes. Organic Electronics, 2019, 67, 222-231.	1.4	12
35	Solution-processed hybrid hosts: a way to explore high triplet energy with admirable current and power efficiency without outcoupling techniques for phosphorescent OLEDs. Journal of Materials Chemistry C, 2020, 8, 228-239.	2.7	11
36	Highly-efficient solution-processed deep-red organic light-emitting diodes based on heteroleptic Ir(III) complexes with effective heterocyclic Schiff base as ancillary ligand. Organic Electronics, 2020, 86, 105885.	1.4	11

DEEPAK KUMAR DUBEY

#	Article	IF	CITATIONS
37	Pâ€214: Flexible White Organic Light Emitting Diode via Solution Process. Digest of Technical Papers SID International Symposium, 2017, 48, 2025-2027.	0.1	10
38	Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer. MRS Advances, 2019, 4, 1801-1809.	0.5	8
39	Surface plasmon-enhanced solution-processed phosphorescent organic light-emitting diodes by incorporating gold nanoparticles. Nanotechnology, 2020, 31, 295204.	1.3	5
40	Effect of dielectric character of electron transporting materials on the performance of organic light-emitting diodes. MRS Advances, 2018, 3, 3445-3451.	0.5	4
41	An Approach for Measuring the Dielectric Strength of OLED Materials. Materials, 2018, 11, 979.	1.3	4
42	Highly-Efficient Solution-Processed Organic Light Emitting Diodes with Blend V2O5-PEDOT:PSS Hole-Injection/Hole-Transport Layer. MRS Advances, 2019, 4, 1779-1786.	0.5	4
43	Unveiling the mythical candles. Building and Environment, 2020, 169, 106565.	3.0	4
44	Wet process feasible novel fluorene-based molecular hole transporting layer for phosphorescent organic light emitting diodes. Optical Materials, 2021, 120, 111410.	1.7	4
45	Nano-Structures Enabling Sunlight and Candlelight-Style OLEDs. Journal of Nanomaterials & Molecular Nanotechnology, 2018, 07, .	0.1	3
46	Carrier Mobility Effect of Electron Transporting Layer on OLED Performance. , 2018, , .		2
47	Fineâ€Tuning the Physicochemical and Electroluminescence Properties of Multiplyâ€Substituted Bipolar Carbazoles by Functional Group Juggling. ChemPhotoChem, 2020, 4, 5364-5375.	1.5	2
48	Solution processed low-color temperature OLED with high efficiency. , 2018, , .		1
49	Pâ€145: Blue Light Hazards and Methods of Quantification. Digest of Technical Papers SID International Symposium, 2019, 50, 1771-1774.	0.1	1
50	High efficiency wet-processed green phosphorescent organic light-emitting diodes. , 2017, , .		0
51	Wide Color Gamut Deep-Blue OLED Architecture for Display Application. ECS Transactions, 2018, 85, 33-39.	0.3	0
52	High-Efficiency Organic Light-Emitting Diodes with a Complete Cascading Carrier Injection Structure. , 2018, , .		0
53	Effect of molecular energy level of electron transport layer on recombination zone in OLED. , 2018, , .		0
54	Pâ€210: Lateâ€News Poster: Efficient Solutionâ€Processed White Organic Light Emitting Diodes Based on a Novel Carbazole Blue Fluorescent Emitter. Digest of Technical Papers SID International Symposium, 2019, 50, 1957-1960.	0.1	0

#	Article	IF	CITATIONS
55	Pâ€213: Lateâ€News Poster: Phenanthroimidazole Based Small Molecule Functioning Both as Blue Emitter and Host for Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 1966-1969.	0.1	0