Nelly Simoneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574533/publications.pdf

Version: 2024-02-01

20	071	394421 1.0	477307
29	971 citations	19 h-index	29 g-index
papers	citations	n-index	g-index
29	29	29	979
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of Stemphylium spp. associated with tomato foliar diseases in Algeria. Phytopathologia Mediterranea, 2022, 61, 39-53.	1.3	3
2	Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Scientific Reports, 2022, 12, 8155.	3.3	10
3	Characterization of New Small-Spored Alternaria Species Isolated from Solanaceae in Algeria. Life, 2021, 11, 1291.	2.4	6
4	<p>Alternaria telliensis sp. nov., a new species isolated from Solanaceae in Algeria</p> . Phytotaxa, 2020, 440, 89-100.	0.3	8
5	Responses of the Necrotrophic Fungus Alternaria brassisicola to the Indolic Phytoalexin Brassinin. Frontiers in Plant Science, 2020, 11, 611643.	3.6	8
6	Occurrence of Leaf Spot Disease Caused by Alternaria crassa (Sacc.) Rands on Jimson Weed and Potential Additional Host Plants in Algeria. Plant Pathology Journal, 2020, 36, 179-184.	1.7	6
7	Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Frontiers in Microbiology, 2019, 10, 1969.	3.5	3
8	A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola. Fungal Biology and Biotechnology, 2017, 4, 1.	5.1	25
9	Alternaria species associated with early blight epidemics on tomato and other Solanaceae crops in northwestern Algeria. European Journal of Plant Pathology, 2017, 148, 181-197.	1.7	55
10	Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiology, 2015, 15, 123.	3.3	37
11	Phosphoproteome profiles of the phytopathogenic fungi <i>Alternaria brassicicola</i> and <i>Botrytis cinerea</i> during exponential growth in axenic cultures. Proteomics, 2014, 14, 1639-1645.	2.2	13
12	Dehydrin-like Proteins in the Necrotrophic Fungus Alternaria brassicicola Have a Role in Plant Pathogenesis and Stress Response. PLoS ONE, 2013, 8, e75143.	2.5	24
13	Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cellular Microbiology, 2011, 13, 62-80.	2.1	66
14	Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus <i>Alternaria brassicicola </i> . Molecular Microbiology, 2011, 79, 1305-1324.	2.5	62
15	The Group III Two-Component Histidine Kinase of Filamentous Fungi Is Involved in the Fungicidal Activity of the Bacterial Polyketide Ambruticin. Applied and Environmental Microbiology, 2009, 75, 127-134.	3.1	47
16	Effect of null mutations in the <i>AbNIK1</i> gene on saprophytic and parasitic fitness of <i>Alternaria brassicicola</i> isolates highly resistant to dicarboximide fungicides. Plant Pathology, 2008, 57, 937-947.	2.4	26
17	Isolation of 12 polymorphic microsatellite loci in the phytopathogenic fungus Alternaria brassicicola. Molecular Ecology Notes, 2005, 5, 948-950.	1.7	21
18	Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Current Genetics, 2005, 47, 234-243.	1.7	89

#	Article	IF	CITATION
19	In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Protection, 2004, 23, 481-488.	2.1	99
20	The IGFBP-3 mRNA and protein levels are IGF-I-dependent and GH-independent in MG-63 human osteosarcoma cells. Molecular and Cellular Endocrinology, 2001, 175, 15-27.	3.2	5
21	Activation of the Jak/Stat signal transduction pathway in GH-treated rat osteoblast-like cells in culture. Molecular and Cellular Endocrinology, 2000, 168, 1-9.	3.2	20
22	Expression of Prolactin Receptors in Human Osteosarcoma Cells. Biochemical and Biophysical Research Communications, 1996, 229, 323-328.	2.1	37
23	Molecular Cloning of Human Calmitine, a Mitochondrial Calcium Binding Protein, Reveals Identity with Calsequestrine. Biochemical and Biophysical Research Communications, 1994, 203, 1477-1482.	2.1	28
24	Mitochondrial DNA alterations and genetic diseases: a review. Biomedicine and Pharmacotherapy, 1994, 48, 199-214.	5 . 6	41
25	Induction of a heat-shock-type response inSaccharomyces cerevisiae following glucose limitation. Yeast, 1991, 7, 367-378.	1.7	34
26	Cytoplasmic transport of ribosomal subunits microinjected into the Xenopus laevis oocyte nucleus: a generalized, facilitated process Journal of Cell Biology, 1990, 111, 1571-1582.	5.2	132
27	Two-dimensional gel analysis of yeast proteins: Application to the study of changes in the levels of major polypeptides ofSaccharomyces cerevisiae depending on the fermentable or nonfermentable nature of the carbon source. Electrophoresis, 1988, 9, 774-780.	2.4	29
28	Identification of polypeptides of the carbon metabolism machinery on the two-dimensional protein map of Saccharomyces cerevisiae. Location of 23 additional polypeptides. Yeast, 1987, 3, 11-21.	1.7	26
29	Identification of Glycolytic Enzyme Polypeptides on the Two-Dimensional Protein Map of <i> Saccharomyces cerevisiae < /i > and Application to the Study of Some Wine Yeasts. Applied and</i>	3.1	11