
Ken-ichi Yuyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5745165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie - International Edition, 2022, , .	13.8	2
2	Frontispiz: Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie, 2022, 134, .	2.0	0
3	Frontispiece: Fluorescence Colour Control in Peryleneâ€Labeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
4	Generation of Ultralong Liposome Tubes by Membrane Fusion beneath a Laser-Induced Microbubble on Gold Surfaces. ACS Omega, 2022, 7, 13120-13127.	3.5	0
5	Heterojunction Perovskite Microrods Prepared by Remoteâ€Controlled Vacancy Filling and Halide Exchange. Advanced Materials Technologies, 2021, 6, 2000934.	5.8	7
6	Optical Force-Induced Chemistry at Solution Surfaces. Annual Review of Physical Chemistry, 2021, 72, 565-589.	10.8	17
7	Incoherent Optical Tweezers on Black Titanium. ACS Applied Materials & Interfaces, 2021, 13, 27586-27593.	8.0	9
8	Optical Trapping of Nanocrystals at Oil/Water Interfaces: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 11743-11752.	5.0	4
9	Nonradiative Energy Transfer through Distributed Bands in Piezochemically Synthesized Cesium and Formamidinium Lead Halide Perovskites. Chemistry - A European Journal, 2020, 26, 2133-2137.	3.3	4
10	Anomalously Large Assembly Formation of Polystyrene Nanoparticles by Optical Trapping at the Solution Surface. Langmuir, 2020, 36, 14234-14242.	3.5	10
11	Remote Tuning of Bandgap and Emission of Lead Perovskites by Spatially Controlled Halide Exchange Reactions. , 2020, 2, 403-408.		23
12	In situ reflection imaging and microspectroscopic study on three-dimensional crystal growth of L-phenylalanine under laser trapping. Applied Physics Express, 2019, 12, 112008.	2.4	4
13	Photoinduced photoluminescence enhancement in self-assembled clusters of formamidinium lead bromide perovskite nanocrystals. Nanoscale, 2019, 11, 9335-9340.	5.6	14
14	Phase transfer reaction for the preparation of stable polymer-quantum dot conjugates. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 91-97.	3.9	3
15	Amplified and Multicolor Emission from Films and Interfacial Layers of Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 133-141.	17.4	41
16	Quantum dot–polymer conjugates for stable luminescent displays. Nanoscale, 2018, 10, 13368-13374.	5.6	10
17	Rapid localized crystallization of lysozyme by laser trapping. Physical Chemistry Chemical Physics, 2018, 20, 6034-6039.	2.8	17
18	Frontispiece: Crystallization of Methylammonium Lead Halide Perovskites by Optical Trapping. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0

Κεν-ιςμι Υυγαμα

#	Article	IF	CITATIONS
19	Crystal Growth and Dissolution Dynamics of <scp>l</scp> -Phenylalanine Controlled by Solution Surface Laser Trapping. Crystal Growth and Design, 2018, 18, 7079-7087.	3.0	15
20	Frontispiz: Crystallization of Methylammonium Lead Halide Perovskites by Optical Trapping. Angewandte Chemie, 2018, 130, .	2.0	0
21	Bubble generation and molecular crystallization at solution surface by intense continuous-wave laser irradiation. Applied Physics Express, 2018, 11, 085502.	2.4	Ο
22	Pseudopolymorph Control of <scp>l</scp> -Phenylalanine Achieved by Laser Trapping. Crystal Growth and Design, 2018, 18, 5417-5425.	3.0	25
23	Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer under Large Positive Gibbs (Free) Energy Change. ACS Nano, 2018, 12, 9060-9069.	14.6	37
24	Crystallization of Methylammonium Lead Halide Perovskites by Optical Trapping. Angewandte Chemie, 2018, 130, 13612-13616.	2.0	11
25	Crystallization of Methylammonium Lead Halide Perovskites by Optical Trapping. Angewandte Chemie - International Edition, 2018, 57, 13424-13428.	13.8	25
26	Blueâ€Emitting Electronâ€Donor/Acceptor Dyads for Nakedâ€Eye Fluorescence Detection of Singlet Oxygen. ChemPhotoChem, 2017, 1, 299-303.	3.0	6
27	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie - International Edition, 2017, 56, 6739-6743.	13.8	22
28	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie, 2017, 129, 6843-6847.	2.0	3
29	Photocontrolled Supramolecular Assembling of Azobenzene-Based Biscalix[4]arenes upon Starting and Stopping Laser Trapping. Langmuir, 2017, 33, 755-763.	3.5	10
30	Femtosecond-Laser-Enhanced Amyloid Fibril Formation of Insulin. Langmuir, 2017, 33, 8311-8318.	3.5	9
31	Blue-Emitting Electron-Donor/Acceptor Dyads for Naked-Eye Fluorescence Detection of Singlet Oxygen. ChemPhotoChem, 2017, 1, 298-298.	3.0	0
32	Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA). Journal of Materials Chemistry C, 2016, 4, 5231-5240.	5.5	15
33	Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation. Nano Letters, 2016, 16, 3058-3062.	9.1	60
34	Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface. Langmuir, 2016, 32, 12488-12496.	3.5	38
35	Two-Dimensional Growth Rate Control of <scp>l</scp> -Phenylalanine Crystal by Laser Trapping in Unsaturated Aqueous Solution. Crystal Growth and Design, 2016, 16, 953-960.	3.0	34
36	Reflection Microspectroscopic Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface. Journal of Physical Chemistry C, 2016, 120, 15578-15585.	3.1	28

Κεν-ιςμι Υυγαμα

#	Article	IF	CITATIONS
37	Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Optical Review, 2015, 22, 143-148.	2.0	4
38	Dynamics and Mechanism of Laser Trapping-Induced Crystal Growth of Hen Egg White Lysozyme. Crystal Growth and Design, 2015, 15, 4760-4767.	3.0	19
39	Laser trapping-induced crystallization ofl-phenylalanine through its high-concentration domain formation. Photochemical and Photobiological Sciences, 2014, 13, 254-260.	2.9	26
40	Crystal Growth of Lysozyme Controlled by Laser Trapping. Crystal Growth and Design, 2014, 14, 15-22.	3.0	23
41	Laser Trapping and Crystallization Dynamics of <scp>l</scp> -Phenylalanine at Solution Surface. Journal of Physical Chemistry Letters, 2013, 4, 2436-2440.	4.6	41
42	Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Accounts of Chemical Research, 2012, 45, 1946-1954.	15.6	118
43	Formation, Dissolution, and Transfer Dynamics of a Millimeter-Scale Thin Liquid Droplet in Glycine Solution by Laser Trapping. Journal of Physical Chemistry C, 2012, 116, 6809-6816.	3.1	22
44	Selective Fabrication of α- and γ-Polymorphs of Glycine by Intense Polarized Continuous Wave Laser Beams. Crystal Growth and Design, 2012, 12, 2427-2434.	3.0	51
45	Laser-trapping assembling dynamics of molecules and proteins at surface and interface. Pure and Applied Chemistry, 2011, 83, 869-883.	1.9	25
46	Nanoparticle preparation of quinacridone and β-carotene using near-infrared laser ablation of their crystals. Applied Physics A: Materials Science and Processing, 2010, 101, 591-596.	2.3	4
47	Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. Journal of Physical Chemistry Letters, 2010, 1, 599-603.	4.6	56
48	Millimeter-Scale Dense Liquid Droplet Formation and Crystallization in Glycine Solution Induced by Photon Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1321-1325.	4.6	47
49	Crystallization in Unsaturated Glycine/D ₂ O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Crystal Growth and Design, 2010, 10, 4686-4688.	3.0	60
50	Fluorescence Colour Control in Perylene‣abeled Polymer Chains Trapped by Nanotextured Silicon. Angewandte Chemie, 0, , .	2.0	0