Fritz Zimprich

List of Publications by Year

 in descending order[^0]
$1 \quad$ Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.

2 LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.

5 Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604
$13.7 \quad 929$

6 A Mutation in VPS35, Encoding a Subunit of the Retromer Complex, Causes Late-Onset Parkinson
Disease. American Journal of Human Genetics, 2011, 89, 168-175.
$\begin{array}{ll} & \text { Mutations in } \\ 1067-1072 .\end{array}$5.8

12 Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nature Communications, 2018, 9, 5269.

- 331
1.1

279

14 Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A.
Brain, 2013, 136, 3140-3150.

Ancient and Recent Positive Selection Transformed Opioid cis-Regulation in Humans. PLoS Biology,

21 Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurology, The, 2020, 19,
908-918.
3.7

137
potassium channel associated gene CNTN2. Brain, 2013, 136, 1155-1160.

Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at
$1 q 43,2 p 16.1,2 q 22.3$ and 17q21.32. Human Molecular Genetics, 2012, 21, 5359-5372.
1.4

Pharmacoresistance in Epilepsy: A Pilot PET Study with the P-Glycoprotein Substrate R-[11 C]verapamil.
Epilepsia, 2007, 48, 1774-1784.
2.6

119

25 Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic
Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1 194.
2.6

119

26 Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature
Communications, 2017, 8, 14774.
5.8

114
<i>DEPDC5 </i> mutations in genetic focal epilepsies of childhood. Annals of Neurology, 2014, 75,
$788-792$.
2.8
105

28 Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology,
$2005,65,1304-1305$.
1.5

101

> Immunohistochemical localization of the $\hat{l} \pm 1, \hat{l} \pm 2$ and $\hat{l} \pm 3$ subunit of the GABAA receptor in the rat brain.
> Neuroscience Letters, 1991, 127, 125-128.

A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Annals of Neurology, 2002, 51, 260-263.

31 RBFOX1 and RBFOX3 Mutations in Rolandic Epilepsy. PLoS ONE, 2013, 8, e73323.
1.1

94

32 Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies. PLoS Genetics, 2015, 11, e1005226.

Expression of Adhesion Molecules and Histocompatibility Antigens at the Bloodâ€Brain Barrier. Brain
Expression of Adhesion Molecu
Pathology, 1991, 1, 115-123.
2.1

79

Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an
exome-based case-control study. Lancet Neurology, The, 2018, 17, 699-708.

European genetic diversity. European Journal of Human Genetics, 2013, 21, 659-665.
37 Clinical Seizure Lateralization in Frontal Lobe Epilepsy. Epilepsia, 2007, 48, 517-523.

39	A novel mutation in the VCP gene (G157R) in a german family with inclusionâ€body myopathy with paget disease of bone and frontotemporal dementia. Muscle and Nerve, 2009, 39, 389-391.	1.0	60
40	Rare exonic deletions of the <scp><i>RBFOX1</i></scp> gene increase risk of idiopathic generalized epilepsy. Epilepsia, 2013, 54, 265-271.	2.6	59
41	Exonâ€disrupting deletions of <scp> <i>NRXN1 </i> </scp> in idiopathic generalized epilepsy. Epilepsia, 2013, 54, 256-264.	2.6	59
42	High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. Journal of Neurology, 2019, 266, 699-706.	1.8	56
43	Analysis of four prevalent filaggrin mutations (R501X, 2282del4, R2447X and S3247X) in Austrian and German patients with atopic dermatitis. Journal of the European Academy of Dermatology and Venereology, 2010, 24, 607-610.	1.3	54

44 Carbamazepineâ€ \cdot and oxcarbazepineâ€induced hyponatremia in people with epilepsy. Epilepsia, 2017, 58, 1227-1233.
47 Analysis of <i>ELP4</i>,<i>SRPX2</i>, and interacting genes in typical and atypical rolandic epilepsy.Epilepsia, 2014, 55, e89-93.A functional polymorphism in the <i>SCN1A gene is not associated with carbamazepine dosages in
2.6
3.1

Lack of association between <i>ABCC2</i> gene variants and treatment response in epilepsy.
Pharmacogenomics, 2012, 13, 185-190.

Genomeâ€wide linkage metaâ€enalysis identifies susceptibility loci at $2 q 34$ and 13q31.3 for genetic generalized epilepsies. Epilepsia, 2012, 53, 308-318.

Buffering intracellular calcium disrupts motoneuron development in intact zebrafish embryos.
Developmental Brain Research, 2001, 129, 169-179.

Psychoses in epilepsy: A comparison of postictal and interictal psychoses. Epilepsy and Behavior, 2016,
60, 58-62.

The stigma of mental illness: Anticipation and attitudes among patients with epileptic, dissociative or somatoform pain disorder. International Review of Psychiatry, 2007, 19, 123-129.
1.4

The effect of early prednisolone treatment on the generalization rate in ocular myasthenia gravis.
European Journal of Neurology, 2013, 20, 708-713.

Clinical and Laboratory Features in Anti-NF155 Autoimmune Nodopathy. Neurology: Neuroimmunology
and NeuroInflammation, 2022, 9, .

Coronavirus induced primary demyelination: indications for the involvement of a humoral immune
response. Neuropathology and Applied Neurobiology, 1991, 17, 469-484.

B Cell Depletion and <scp>SARSâ€CoV</scp>â€2 Vaccine Responses in Neuroimmunologic Patients. Annals
of Neurology, 2022, 91, 342-352.

Altered expression of voltage-dependent calcium channel $\hat{l} \pm 1$ subunits in temporal lobe epilepsy with
Ammonâ $€^{\text {TM }}$ s horn sclerosis. Neuroscience, 2002, 111, 57-69.

Epidemiology of myasthenia gravis in Austria: rising prevalence in an ageing society. Wiener Klinische
Wochenschrift, 2012, 124, 763-768.

The TGFâ€b/SOX4 axis and ROSâ€driven autophagy coâ€mediate CD39 expression in regulatory Tâ€eells. FASEB Journal, 2020, 34, 8367-8384.
0.2
.08

Comparative effectiveness of antiepileptic drugs in patients with mesial temporal lobe epilepsy with
hippocampal sclerosis. Epilepsia, 2017, 58, 1734-1741.

An autosomal dominant early adult-onset distal muscular dystrophy. Muscle and Nerve, 2000, 23, 1876-1879.

Andreas Rett and benign familial neonatal convulsions revisited. Neurology, 2006, 67, 864-866.
1.5

25

Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the <i>KIF1A</i> gene. European Journal of Neurology, 2017, 24, 741-747.
73 Role of LINGO1 polymorphisms in Parkinson's disease. Movement Disorders, 2009, 24, 2404-2407.

$74 \quad$| Mutations in the CLCN2 gene are a rare cause of idiopathic generalized epilepsy syndromes. |
| :--- |
| Neurogenetics, 2006, 7, 265-268. |

$75 \quad$| Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of |
| :--- |
| SCARB2mutations in isolated AMRF features. BMC Neurology, 2011, 11, 134. |

Heterogeneous contribution of microdeletions in the development of common generalised and focal
epilepsies. Journal of Medical Genetics, 2017,54,598-606.
Exome-wide analysis of mutational burden in patients with typical and atypical Rolandic epilepsy.
European Journal of Human Genetics, 2018, 26, 258-264.

78 Frequency and clinical features of treatment-refractory myasthenia gravis. Journal of Neurology, 2020, 267, 1004-1011.
1.8

Testing association of rare genetic variants with resistance to three common antiseizure medications.
Epilepsia, 2020, 61, 657-666.
2.622

80 Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.
PLoS ONE, 2016, 11, e0150426.

81	From Eugenic Euthanasia to Habilitation of "Disabled" Children: Andreas Rett's Contribution. Journal of Child Neurology, 2009, 24, 115-127.	0.7	21
82	Management of Autoimmune Encephalitis: An Observational Monocentric Study of 38 Patients. Frontiers in Immunology, 2018, 9, 2708.	2.2	21

83	Pharmacoresponse in genetic generalized epilepsy: a genome-wide association study. Pharmacogenomics, 2020, 21, 325-335.	0.6	21
84	Postictal psychosis in temporal lobe epilepsy: a caseâ€"control study. European Journal of Neurology, 2013, 20, 955-961.	1.7	20
85	Association of the chromosome 11q13.5 variant with atopic dermatitis in Austrian patients. European Journal of Dermatology, 2013, 23, 142-145.	0.3	20

86 Subgroup stratification and outcome in recently diagnosed generalized myasthenia gravis. Neurology, 1.5 20
2020, 95, el426-e1436.
1.3

19

$$
\begin{aligned}
& \text { Real-time measurements of calcium dynamics in neurons developing in situ within zebrafish embryos. } \\
& \text { Pflugers Archiv European Journal of Physiology, 1998, 436, 489-493. }
\end{aligned}
$$

Dynamic upâ€regulation of prodynorphin transcription in temporal lobe epilepsy. Hippocampus, 2009, 19, 1051-1054.complex genes. Journal of Medical Genetics, 2020, 57, 624-633.
Calcium Channels in Neuroblastoma Cell Growth Cones. European Journal of Neuroscience, 1996, 8,
$467-475$.
-

The receptor for advanced glycation endproducts and its ligands in patients with myasthenia gravis.
Biochemical and Biophysical Research Communications, 2012, 420, 96-101.

```
97 Multifocal motor neuropathy in Austria: a nationwide survey of clinical features and response to
treatment. Journal of Neurology, 2018, 265, 2834-2840.
```potentials (ERP) study. Clinical Neurophysiology, 2017, 128, 472-479.

The c.65â \(£ 2 A \& g t ; G\) splice site mutation is associated with a mild phenotype in Danon disease due to the
102 transcription of normal LAMP2 mRNA. Clinical Genetics, 2016, 90, 366-371.
1.0

11

Myasthenia gravis AChR antibodies inhibit function of rapsyn-clustered AChRs. Journal of Neurology,
0.9

11
103 Neurosurgery and Psychiatry, 2020, 91, 526-532.

Lack of Association between a GABAB Receptor 1 Gene Polymorphism and Temporal Lobe Epilepsy.
2.6

10

Cerebrospinal fluid analysis in Guillainâ€"BarrÃ® syndrome: value of albumin quotients. Journal of
1.8

10
105 Neurology, 2021, 268, 3294-3300.

Using common genetic variants to find drugs for common epilepsies. Brain Communications, 2021, 3, fcab287.
109
110

Mutational and phenotypic expansion of ATP1A3-related disorders: Report of nine cases. Gene, 2020, 749, 144709.

Association of ultraâ€pare coding variants with genetic generalized epilepsy: A caseâ€"control whole exome sequencing study. Epilepsia, 2022, 63, 723-735.
2.6

8
11

111 No association between proton pump inhibitor use and ALS risk: a nationwide nested caseâe"control
1.6
study. Scientific Reports, 2020, 10, 13371.
\(\left.\begin{array}{ll}\text { Shortâ€term and sustained clinical response following thymectomy in patients with myasthenia gravis. } \\
\text { European Journal of Neurology, 2022, 29, 2453-2462. }\end{array}\right] .\)\begin{tabular}{c}
1.7
\end{tabular}

115 Rare gene deletions in genetic generalized and Rolandic epilepsies. PLoS ONE, 2018, 13, e0202022.
1.1

6

\section*{116 Delineation of epileptic and neurodevelopmental phenotypes associated with variants in STX1B.}

Seizure: the Journal of the British Epilepsy Association, 2021, 87, 25-29.
\(0.9 \quad 6\)

> Real-world treatment of adult patients with Guillain-BarrÃ® syndrome over the last two decades.
> 117 Scientific Reports, 2021, 11, 19170.

Severe Myasthenic Manifestation of Leptospirosis Associated with New Sequence Type ofLeptospira
118 interrogans. Emerging Infectious Diseases, 2019, 25, 968-971.
2.0

5

119 Childhoodâ€onset progressive dystonia associated with pathogenic truncating variants in <i> CHD8 </i>.
Annals of Clinical and Translational Neurology, 2021, 8, 1986-1990.
\(1.7 \quad 5\)

Biphasic effect of calcium on neurite outgrowth in neuroblastoma and cerebellar granule cells.
120 Developmental Brain Research, 1994, 80, 7-12.
2.1

4

Analysis of the prodynorphin promoter polymorphism in atopic dermatitis and disease-related
\(121 \quad\) Analysis of the prodynorphin promoter polymorphism in atopic dermatit
\(0.6 \quad 4\)
lodinated contrast agents in patients with myasthenia gravis: a retrospective cohort study. Journal of
1.8

4
122 Neurology, 2017, 264, 1209-1217.

Adult-onset variant ataxia-telangiectasia diagnosed by exome and cDNA sequencing. Neurology:
0.9

Genetics, 2019, 5, e346.

Phenotypic variability of <i> GABRA1</i>â€related epilepsy in monozygotic twins. Annals of Clinical and
Translational Neurology, 2019, 6, 2317-2322.
1.7

4

Clinicoâ€genetic spectrum of limbâ€girdle muscular weakness in Austria: A multicentre cohort study.
European Journal of Neurology, 2022, , .```

[^0]: Source: https:/|exaly.com/author-pdf/5745092/publications.pdf
 Version: 2024-02-01

