
Shashi Pandey-Rai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomedical potential of green synthesized silver nanoparticles from root extract of Asparagus officinalis. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 213-218.	0.9	4
2	Impact of green synthesized WcAgNPs on in-vitro plant regeneration and withanolides production by inducing key biosynthetic genes in Withania coagulans. Plant Cell Reports, 2021, 40, 283-299.	2.8	15
3	Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua. Reference Series in Phytochemistry, 2021, , 99-116.	0.2	3
4	Marker-assisted breeding for abiotic stress tolerance in horticultural crops. , 2021, , 63-74.		2
5	Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicology and Environmental Safety, 2021, 208, 111750.	2.9	46
6	Heterologous expression of cyanobacterial PCS confers augmented arsenic and cadmium stress tolerance and higher artemisinin in Artemisia annua hairy roots. Plant Biotechnology Reports, 2021, 15, 317-334.	0.9	6
7	An overview on miRNA-encoded peptides in plant biology research. Genomics, 2021, 113, 2385-2391.	1.3	24
8	Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. Physiology and Molecular Biology of Plants, 2021, 27, 1823-1835.	1.4	16
9	Untangling the UV-B radiation-induced transcriptional network regulating plant morphogenesis and secondary metabolite production. Environmental and Experimental Botany, 2021, 192, 104655.	2.0	26
10	Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant's developmental behavior. , 2021, , 435-452.		4
11	In-silico and in-vitro studies of Human 15- lipoxygenase B protein with bioactive phytocompounds having strong antiinflammatory potential. Journal of Scientific Research, 2021, 65, 173-181.	0.1	0
12	New perspectives of the Artemisia annua bioactive compounds as an affordable cure in treatment of malaria and cancer. , 2021, , 299-315.		3
13	Neuromodulatory potential of Asparagus racemosus and its bioactive molecule Shatavarin IV by enhancing synaptic acetylcholine level and nAChR activity. Neuroscience Letters, 2021, 764, 136294.	1.0	7
14	Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto- and Bio-Stimulants. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	18
15	microRNA 166: an evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family. Physiology and Molecular Biology of Plants, 2021, 27, 2471-2485.	1.4	20
16	Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Frontiers in Agronomy, 2021, 3, .	1.5	12
17	Salicylic acid and nitric oxide signaling in plant heat stress. Physiologia Plantarum, 2020, 168, 241-255.	2.6	85
18	Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. Journal of Biotechnology, 2020, 309, 113-130.	1.9	20

Shashi Pandey-Rai

#	Article	IF	CITATIONS
19	Repurposing Artemisia annua L. Flavonoids, Artemisinin and Its Derivatives as Potential Drugs Against Novel Coronavirus (SARS –nCoV) as Revealed by In-Silico Studies. International Journal of Applied Sciences and Biotechnology, 2020, 8, 374-393.	0.4	5
20	Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua. Reference Series in Phytochemistry, 2020, , 1-18.	0.2	0
21	Prediction and validation of DREB transcription factors for salt tolerance in Solanum lycopersicum L.: An integrated experimental and computational approach. Environmental and Experimental Botany, 2019, 165, 1-18.	2.0	6
22	Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Materials Science and Engineering C, 2019, 100, 152-164.	3.8	112
23	Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L Planta, 2019, 249, 497-514.	1.6	31
24	Possibility of Hydrological Connectivity between Manasarovar Lake and Gangotri Glacier. Current Science, 2019, 116, 1062.	0.4	2
25	Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. Plant Physiology and Biochemistry, 2018, 128, 72-88.	2.8	67
26	An improved thin cell layer culture system for efficient clonal propagation and in vitro withanolide production in a medicinal plant Withania coagulans Dunal. Industrial Crops and Products, 2018, 119, 172-182.	2.5	30
27	Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L Protoplasma, 2018, 255, 139-152.	1.0	58
28	Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiology and Biochemistry, 2018, 132, 590-602.	2.8	30
29	Investigating the impact of high temperature on growth and yield of Lablab purpureus L. inbred lines using integrated phenotypical, physiological, biochemical and molecular approaches. Indian Journal of Plant Physiology, 2018, 23, 209-226.	0.8	7
30	Response of Lablab purpureus L. to high temperature stress and role of exogenous protectants in mitigating high temperature induced oxidative damages. Molecular Biology Reports, 2018, 45, 1375-1395.	1.0	17
31	Recent advancement in modern genomic tools for adaptation of Lablab purpureus L to biotic and abiotic stresses: present mechanisms and future adaptations. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	14
32	Protection of Artemisia annua roots and leaves against oxidative stress induced by arsenic. Biologia Plantarum, 2017, 61, 367-377.	1.9	15
33	Downregulation of Î ³ ECS gene affects antioxidant activity and free radical scavenging system during pod development and maturation in Lablab perpureus L. Biocatalysis and Agricultural Biotechnology, 2017, 11, 192-200.	1.5	5
34	Study of Antioxidant, Anti-inflammatory, and DNA-Damage Protection Properties of Some Indian Medicinal Plants Reveal their Possible Role in Combating Psoriasis. International Journal of Applied Sciences and Biotechnology, 2017, 5, 141-149.	0.4	3
35	In vitro generation of high artemisinin yielding salt tolerant somaclonal variant and development of SCAR marker in Artemisia annua L Plant Cell, Tissue and Organ Culture, 2016, 127, 301-314.	1.2	15
36	Inhibition of imiquimod-induced psoriasis-like dermatitis in mice by herbal extracts from some Indian medicinal plants. Protoplasma, 2016, 253, 503-515.	1.0	21

Shashi Pandey-Rai

#	Article	IF	CITATIONS
37	Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. Protoplasma, 2016, 253, 15-30.	1.0	39
38	Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta, 2015, 242, 869-879.	1.6	35
39	Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxicology and Environmental Safety, 2015, 115, 101-111.	2.9	64
40	Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in <i>Artemisia annua</i> , a Medicinal Plant as Revealed by Homology-Based Proteomics. International Journal of Proteomics, 2014, 2014, 1-21.	2.0	29
41	Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L Plant Cell, Tissue and Organ Culture, 2014, 116, 371-385.	1.2	57
42	GC–MS analysis of the essential oil of Celastrus paniculatus Willd. seeds and antioxidant, anti-inflammatory study of its various solvent extracts. Industrial Crops and Products, 2014, 61, 345-351.	2.5	42
43	Modulations of physiological responses and possible involvement of defense-related secondary metabolites in acclimation of Artemisia annua L. against short-term UV-B radiation. Planta, 2014, 240, 611-627.	1.6	40
44	Protective effect of Pueraria tuberosa DC. embedded biscuit on cisplatin-induced nephrotoxicity in mice. Journal of Natural Medicines, 2012, 66, 109-118.	1.1	19
45	Qualitative and Quantitative analysis of 3D predicted arachidonate 15-lipoxygenase-B (15-LOX-2) from Homo sapiens. Bioinformation, 2012, 8, 555-561.	0.2	8
46	Supplemental ultravioletâ€B and ozone: impact on antioxidants, proteome and genome of linseed (<i>Linum usitatissimum</i> L. cv. Padmini). Plant Biology, 2011, 13, 93-104.	1.8	49
47	UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. – An antimalarial plant. Journal of Photochemistry and Photobiology B: Biology, 2011, 105, 216-225.	1.7	88
48	Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology, 2011, 20, 1900-1913.	1.1	52
49	A rapid and cost-effective method of genomic DNA isolation from cyanobacterial culture, mat and soil suitable for genomic fingerprinting and community analysis. Journal of Applied Phycology, 2007, 19, 373-382.	1.5	37
50	Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. Journal of Genetics, 2007, 86, 259-268.	0.4	33
51	Composition of the essential oils of the leaves and flowers ofRhus mysurensis Heyne ex Wight & Arn growing in the Aravalli mountain range at New Delhi. Flavour and Fragrance Journal, 2006, 21, 228-229.	1.2	7
52	Constituents of the flower oil ofCarissa opaca growing in the Aravalli mountain range at New Delhi. Flavour and Fragrance Journal, 2006, 21, 304-305.	1.2	11
53	Volatile components of leaves and flowers of periwinkleCatharanthus roseus (L.) G. Don from New Delhi. Flavour and Fragrance Journal, 2006, 21, 427-430.	1.2	18
54	Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta, 2005, 220, 376-383.	1.6	55

SHASHI PANDEY-RAI

#	Article	IF	CITATIONS
55	Regulation of unipinnate character in the distal tendrilled domain of compound leaf-blade by the gene MULTIFOLIATE PINNA (MFP) in pea Pisum sativum. Plant Science, 2004, 166, 929-940.	1.7	14
56	Pleiotropic morphological and abiotic stress resistance phenotypes of the hyper-abscisic acid producing Aboâ,,¢ mutant in the periwinkleCatharanthus roseus. Journal of Biosciences, 2001, 26, 57-70.	0.5	7
57	Induced mutation to monocotyledony in periwinkle,Catharanthus roseus, and suppression of mutant phenotype by kinetin. Journal of Genetics, 2000, 79, 97-104.	0.4	5
58	Unlocking Pharmacological and Therapeutic Potential of Hyacinth Bean (Lablab purpureus L.): Role of OMICS Based Biology, Biotic and Abiotic Elicitors. , 0, , .		2
59	In-vivo Studies and Molecular Docking of Modeled Mus musculas 8S Lipoxygenase Protein Using Some Natural Bioactive Compounds. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 0, , 1.	0.4	0