
Juha S Lehtonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Liquid-Phase Epoxidation of Ethylene with Hydrogen Peroxide on a Titanium-Silicate Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 9429-9436.	1.8	19
2	Fast Pyrolysis of Hydrolysis Lignin in Fluidized Bed Reactors. Energy & Fuels, 2021, 35, 14758-14769.	2.5	18
3	Modelling of a microreactor for the partial oxidation of 1-butanol on a titania supported gold catalyst. Chemical Engineering Science, 2020, 221, 115695.	1.9	12
4	Kinetic Modelling of the Aqueous-Phase Reforming of Fischer-Tropsch Water over Ceria-Zirconia Supported Nickel-Copper Catalyst. Catalysts, 2019, 9, 936.	1.6	12
5	Solvent-free Hydrodeoxygenation of Î ³ -Nonalactone on Noble Metal Catalysts Supported on Zirconia. Topics in Catalysis, 2019, 62, 724-737.	1.3	7
6	Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: Process optimization and reaction kinetics. Fuel, 2019, 239, 1015-1027.	3.4	56
7	Aqueous-phase reforming of Fischer-Tropsch alcohols over nickel-based catalysts to produce hydrogen: Product distribution and reaction pathways. Applied Catalysis A: General, 2018, 567, 112-121.	2.2	19
8	Whisker carbon formation in catalytic steam reforming of biomass gasification gas. Applied Catalysis A: General, 2018, 564, 133-141.	2.2	11
9	Structured microreactor with gold and palladium on titania: Active, regenerable and durable catalyst coatings for the gas-phase partial oxidation of 1-butanol. Applied Catalysis A: General, 2018, 562, 173-183.	2.2	10
10	Liquid Phase Furfural Hydrotreatment to 2â€Methylfuran with Carbon Supported Copper, Nickel, and Iron Catalysts. ChemistrySelect, 2017, 2, 51-60.	0.7	25
11	Toluene Oxidation in the Absence and Presence of CO, CO ₂ , Water and H ₂ over ZrO ₂ â€Based Gasification Gas Cleanâ€Up Catalysts. ChemistrySelect, 2017, 2, 1663-1670.	0.7	4
12	Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production. Biomass and Bioenergy, 2017, 106, 29-37.	2.9	39
13	Catalytic Fast Pyrolysis: Influencing Bioâ€Oil Quality with the Catalystâ€ŧoâ€Biomass Ratio. Energy Technology, 2017, 5, 94-103.	1.8	46
14	Benzene steam reforming kinetics in biomass gasification gas cleaning. Fuel, 2016, 182, 696-703.	3.4	29
15	Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO 2 catalyst: Insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General, 2016, 526, 183-190.	2.2	47
16	3D simulations of a microchannel reactor with diffusion inside the catalyst layer for 1-butanol dehydration reaction in gas phase. Chemical Engineering and Processing: Process Intensification, 2016, 110, 97-105.	1.8	6
17	A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 2016, 41, 11003-11032.	3.8	117
18	Toluene oxidation over ZrO2-based gasification gas clean-up catalysts: Part A. Effect of oxygen and temperature on the product distribution. Applied Catalysis B: Environmental, 2016, 199, 523-530.	10.8	7

#	Article	IF	CITATIONS
19	Toluene oxidation over ZrO2-based gasification gas clean-up catalysts: Part B. Kinetic modeling. Applied Catalysis B: Environmental, 2016, 199, 45-54.	10.8	5
20	Reactor design and catalysts testing for hydrogen production by methanol steam reforming for fuel cells applications. International Journal of Hydrogen Energy, 2016, 41, 924-935.	3.8	50
21	Comparison of Reactive Distillation and Dual Extraction Processes for the Separation of Acetone, Butanol, and Ethanol from Fermentation Broth. Industrial & Engineering Chemistry Research, 2016, 55, 1952-1964.	1.8	9
22	Steam reforming of n -butanol over Rh/ZrO 2 catalyst: role of 1-butene and butyraldehyde. Applied Catalysis B: Environmental, 2016, 182, 33-46.	10.8	34
23	Hydrotreating reactions of tall oils over commercial NiMo catalyst. Energy Science and Engineering, 2015, 3, 286-299.	1.9	16
24	Oxidative steam reforming of pyrolysis oil aqueous fraction with zirconia pre-conversion catalyst. International Journal of Hydrogen Energy, 2015, 40, 12088-12096.	3.8	17
25	Carbon formation in catalytic steam reforming of natural gas with SOFC anode off-gas. International Journal of Hydrogen Energy, 2015, 40, 1548-1558.	3.8	22
26	Steam reforming of pyrolysis oil aqueous fraction obtained by one-step fractional condensation. International Journal of Hydrogen Energy, 2015, 40, 3149-3157.	3.8	22
27	Effect of process conditions on tar formation from thermal reactions of ethylene. Fuel, 2015, 153, 118-127.	3.4	8
28	1-Butanol dehydration in microchannel reactor: Kinetics and reactor modeling. Chemical Engineering Science, 2015, 137, 740-751.	1.9	14
29	Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth. Nanoscale, 2015, 7, 20284-20289.	2.8	27
30	Hydrodeoxygenation of Methyl Heptanoate over Rh/ZrO ₂ Catalyst as a Model Reaction for Biofuel Production: Kinetic Modeling Based On Reaction Mechanism. Industrial & Engineering Chemistry Research, 2015, 54, 11986-11996.	1.8	16
31	Catalytic upgrading of crude tall oil into a paraffin-rich liquid. Biomass Conversion and Biorefinery, 2015, 5, 149-159.	2.9	8
32	Steam- and autothermal-reforming of n-butanol over Rh/ZrO2 catalyst. Catalysis Today, 2015, 244, 47-57.	2.2	34
33	Interaction of H2S with ZrO2 and its influence on reactivity of surface oxygen. Applied Catalysis B: Environmental, 2015, 164, 360-370.	10.8	15
34	Comparison of Solid Acid-Catalyzed and Autocatalyzed C5 and C6 Sugar Dehydration Reactions with Water as a Solvent. Catalysis Letters, 2014, 144, 1839-1850.	1.4	18
35	Assessing the Potential of Crude Tall Oil for the Production of Green-Base Chemicals: An Experimental and Kinetic Modeling Study. Industrial & Engineering Chemistry Research, 2014, 53, 18430-18442.	1.8	23
36	Novel dual extraction process for acetone–butanol–ethanol fermentation. Separation and Purification Technology, 2014, 124, 18-25.	3.9	52

#	Article	IF	CITATIONS
37	Insights into chirality distributions of single-walled carbon nanotubes grown on different Co _x Mg _{1â^'x} O solid solutions. Journal of Materials Chemistry A, 2014, 2, 5883-5889.	5.2	26
38	Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications. Applied Catalysis B: Environmental, 2014, 148-149, 11-21.	10.8	25
39	The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media. Journal of Catalysis, 2014, 309, 38-48.	3.1	24
40	Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chemistry, 2014, 16, 3549.	4.6	125
41	Water and carbon oxides on monoclinic zirconia: experimental and computational insights. Physical Chemistry Chemical Physics, 2014, 16, 20650-20664.	1.3	55
42	Dual Extraction Process for the Utilization of an Acetone–Butanol–Ethanol Mixture in Gasoline. Industrial & Engineering Chemistry Research, 2014, 53, 12379-12386.	1.8	9
43	Precise Determination of the Threshold Diameter for a Single-Walled Carbon Nanotube To Collapse. ACS Nano, 2014, 8, 9657-9663.	7.3	43
44	Hydrogenolysis of methyl heptanoate over Co based catalysts: Mediation of support property on activity and product distribution. Applied Catalysis B: Environmental, 2014, 147, 236-245.	10.8	41
45	Hydrodeoxygenation of Methyl Heptanoate over Noble Metal Catalysts: Catalyst Screening and Reaction Network. Industrial & Engineering Chemistry Research, 2013, 52, 11544-11551.	1.8	25
46	Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 2013, 52, 10114-10125.	1.8	24
47	Growth of single-walled carbon nanotubes with large chiral angles on rhodium nanoparticles. Nanoscale, 2013, 5, 10200.	2.8	8
48	Functionalized Activated Carbon Catalysts in Xylose Dehydration. Topics in Catalysis, 2013, 56, 512-521.	1.3	21
49	Molecular level insights to the interaction of toluene with ZrO2-based biomass gasification gas clean-up catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 769-779.	10.8	10
50	Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon, 2013, 52, 590-594.	5.4	30
51	Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Scientific Reports, 2013, 3, 1460.	1.6	175
52	Catalytic Pyrolysis of Forest Thinnings with ZSM-5 Catalysts: Effect of Reaction Temperature on Bio-oil Physical Properties and Chemical Composition. Energy & Fuels, 2013, 27, 7587-7601.	2.5	27
53	Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale, 2012, 4, 7394.	2.8	57
54	Preparation Methods for Multiâ€Walled Carbon Nanotube Supported Palladium Catalysts. ChemCatChem, 2012, 4, 2055-2061.	1.8	21

#	Article	IF	CITATIONS
55	Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction. Chemistry of Materials, 2012, 24, 1796-1801.	3.2	63
56	Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon, 2012, 50, 4294-4297.	5.4	28
57	Growth and surface engineering of vertically-aligned low-wall-number carbon nanotubes. Carbon, 2012, 50, 4750-4754.	5.4	14
58	Hydroformylation of 1-Butene on Rh Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 1325-1331.	1.8	3
59	Kinetic Modeling of Propene Hydroformylation with Rh/TPP and Rh/CHDPP Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 4317-4324.	1.8	21
60	Solubility of gases in a hydroformylation solvent. Chemical Engineering Science, 2006, 61, 3698-3704.	1.9	15
61	Modeling of Complex Organic Solidâ^'Liquid Reaction Systems in Stirred Tanks. Industrial & Engineering Chemistry Research, 2003, 42, 2516-2524.	1.8	8
62	Modelling of complex liquid–solid reaction systems in semibatch reactors: Claisen condensation in industrial scale. Chemical Engineering Science, 2001, 56, 699-705.	1.9	0
63	Polyesterification kinetics of complex mixtures in semibatch reactors. Chemical Engineering Science, 2001, 56, 1293-1298.	1.9	7
64	Kinetics and Mass Transfer of Organic Liquid-Phase Reactions in the Presence of a Sparingly Soluble Solid Phase. Organic Process Research and Development, 2000, 4, 323-332.	1.3	3
65	Comparison of polyvinylbenzene and polyolefin supported sulphonic acid catalysts in the esterification of acetic acid. Applied Catalysis A: General, 1999, 184, 25-32.	2.2	64
66	A homogeneous-heterogeneously catalysed reaction system in a loop reactor. Catalysis Today, 1999, 48, 139-145.	2.2	8
67	Modelling and scale-up of a loop reactor for hydrogenation processes. Chemical Engineering Science, 1999, 54, 2793-2798.	1.9	11
68	Modelling of speciality chemicals production in liquid–liquid reactors—A case study: synthesis of diols. Chemical Engineering Science, 1999, 54, 1-18.	1.9	4
69	Asymptotic analysis of chemical reactions. Chemical Engineering Science, 1999, 54, 1131-1143.	1.9	10
70	Dynamic modelling of simultaneous reaction and distillation in a semibatch reactor system. Chemical Engineering Science, 1998, 53, 113-121.	1.9	2
71	On the Principles of Modelling of Homogeneousâ^'Heterogeneous Reactions in the Production of Fine Chemicals. A Case Study:Â Reductive Alkylation of Aromatic Amines. Organic Process Research and Development, 1998, 2, 78-85.	1.3	13
72	Optimization of the Reaction Conditions for Complex Kinetics in a Semibatch Reactor. Industrial & Engineering Chemistry Research, 1997, 36, 5196-5206.	1.8	4

#	Article	IF	CITATIONS
73	Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chemical Engineering Science, 1997, 52, 3369-3381.	1.9	136
74	Kinetic Model for the Homogeneously Catalyzed Polyesterification of Dicarboxylic Acids with Diols. Industrial & Engineering Chemistry Research, 1996, 35, 3951-3963.	1.8	26
75	Kinetic analysis of the reaction network in the catalyzed polyesterification of unsaturated carboxylic acids. Chemical Engineering Science, 1996, 51, 2799-2804.	1.9	4
76	Modeling of the Kinetics of Alkali Metal Fusion. Industrial & Engineering Chemistry Research, 1995, 34, 3678-3687.	1.8	3