Haibo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744737/publications.pdf Version: 2024-02-01

HAIROLI

#	Article	IF	CITATIONS
1	Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochimica Acta, 2010, 55, 4170-4173.	5.2	404
2	Novel Graphene-Like Electrodes for Capacitive Deionization. Environmental Science & Technology, 2010, 44, 8692-8697.	10.0	392
3	Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry, 2009, 19, 6773.	6.7	352
4	Capacitive behavior of graphene–ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry, 2009, 634, 68-71.	3.8	320
5	Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research, 2008, 42, 4923-4928.	11.3	281
6	lon-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 2011, 275, 62-66.	8.2	247
7	Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry, 2012, 22, 15556.	6.7	223
8	A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 2011, 653, 40-44.	3.8	220
9	Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. Journal of Alloys and Compounds, 2011, 509, 5488-5492.	5.5	197
10	Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 2010, 75, 8-14.	7.9	174
11	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	10.3	158
12	The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. Journal of Materials Chemistry A, 2013, 1, 6335.	10.3	154
13	Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics, 2009, 180, 1525-1528.	2.7	142
14	Electron field emission from screen-printed graphene films. Nanotechnology, 2009, 20, 425702.	2.6	140
15	Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films, 2009, 517, 1616-1619.	1.8	128
16	Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity. Chemical Engineering Journal, 2018, 343, 8-15.	12.7	127
17	Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes. Chemical Physics Letters, 2010, 485, 161-166.	2.6	121
18	Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochimica Acta, 2018, 263, 85-93.	5.2	121

#	Article	IF	CITATIONS
19	Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. Journal of Alloys and Compounds, 2009, 480, L17-L19.	5.5	112
20	Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores. Scientific Reports, 2016, 6, 18966.	3.3	105
21	Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization. Journal of Electroanalytical Chemistry, 2012, 666, 85-88.	3.8	103
22	Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance. Desalination, 2019, 449, 69-77.	8.2	98
23	Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization. Electrochimica Acta, 2012, 66, 106-109.	5.2	85
24	Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination, 2019, 451, 133-138.	8.2	85
25	Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGOâ€−Na _{1.1} V ₃ O _{7.9} @rGO. Journal of Materials Chemistry A, 2019, 7, 16892-16901.	10.3	78
26	A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization. Journal of Materials Chemistry A, 2014, 2, 3484.	10.3	76
27	Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu(II) ions. Journal of Alloys and Compounds, 2011, 509, 5667-5671.	5.5	57
28	Reduced graphene oxide–carbon nanotubes composite films by electrophoretic deposition method for supercapacitors. Journal of Electroanalytical Chemistry, 2011, 661, 270-273.	3.8	53
29	Hydrothermally synthesized graphene and Fe ₃ O ₄ nanocomposites for high performance capacitive deionization. RSC Advances, 2016, 6, 11967-11972.	3.6	52
30	Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes. Separation and Purification Technology, 2016, 171, 93-100.	7.9	51
31	Preparation of nitrogen-doped graphitic porous carbon towards capacitive deionization with high adsorption capacity and rate capability. Separation and Purification Technology, 2019, 211, 233-241.	7.9	51
32	An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochimica Acta, 2015, 176, 755-762.	5.2	49
33	One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption. Applied Surface Science, 2020, 502, 144129.	6.1	48
34	Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment. Journal of Physical Chemistry C, 2020, 124, 27251-27266.	3.1	43
35	Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers. Electrochimica Acta, 2011, 56, 3164-3169.	5.2	30
36	Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate. Separation and Purification Technology, 2020, 231, 115918.	7.9	30

#	Article	IF	CITATIONS
37	Na0.71CoO2 promoted sodium uptake via faradaic reaction for highly efficient capacitive deionization. Separation and Purification Technology, 2020, 234, 116090.	7.9	27
38	Preferential electrosorption of anions by C/Na0.7MnO2 asymmetrical electrodes. Separation and Purification Technology, 2018, 191, 322-327.	7.9	26
39	A Brief Review on Highâ€Performance Capacitive Deionization Enabled by Intercalation Electrodes. Global Challenges, 2021, 5, 2000054.	3.6	26
40	Mechanical and optical properties of transparent alumina obtained by rapid vacuum sintering. Ceramics International, 2017, 43, 420-426.	4.8	24
41	Synthesis of TiO ₂ –graphene composites via visible-light photocatalytic reduction of graphene oxide. Journal of Materials Research, 2011, 26, 970-973.	2.6	23
42	In Situ Growth of CoP 3 /Carbon Polyhedron/CoO/NF Nanoarrays as Binderâ€Free Anode for Lithiumâ€ion Batteries with Enhanced Specific Capacity. Small, 2020, 16, 1907468.	10.0	23
43	Electrosorption of different cations and anions with membrane capacitive deionization based on carbon nanotube/nanofiber electrodes and ion-exchange membranes. Desalination and Water Treatment, 2011, 30, 266-271.	1.0	22
44	Reconfiguring the interface charge of Co@Carbon polyhedron for enhanced capacitive deionization. Chemical Engineering Journal, 2022, 447, 137438.	12.7	22
45	Elucidating the capacitive desalination behavior of Na _x CoO ₂ : the significance of electrochemical pre-activation. Nanoscale, 2020, 12, 7586-7594.	5.6	21
46	Interfacial engineering of polyhedral carbon@hollowed carbon@SiO2 nanobox with tunable structure for enhanced lithium ion battery. Applied Surface Science, 2021, 538, 148039.	6.1	21
47	Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization. Desalination and Water Treatment, 2013, 51, 3988-3994.	1.0	19
48	Vertically-aligned growth of CuAl-layered double oxides on reduced graphene oxide for hybrid capacitive deionization with superior performance. Environmental Science: Nano, 2020, 7, 764-772.	4.3	19
49	Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Frontiers in Chemistry, 2020, 8, 415.	3.6	19
50	Ferric ion adsorption and electrodesorption by carbon nanotubes and nanofibres films. Water Science and Technology, 2009, 59, 1657-1663.	2.5	17
51	Weaving ZIF-67 by employing carbon nanotubes to constitute hybrid anode for lithium ions battery. Materials Letters, 2018, 212, 143-146.	2.6	17
52	Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability. Applied Surface Science, 2020, 514, 145920.	6.1	17
53	The study of membrane capacitive deionization from charge efficiency. Desalination and Water Treatment, 2012, 42, 210-215.	1.0	16
54	Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. RSC Advances, 2013, 3, 14954.	3.6	16

#	Article	lF	CITATIONS
55	The study of capacitive deionization behavior of a carbon nanotube electrode from the perspective of charge efficiency. Water Science and Technology, 2015, 71, 83-88.	2.5	16
56	Regeneration of carbon nanotube and nanofibre composite film electrode for electrical removal of cupric ions. Water Science and Technology, 2010, 61, 1427-1432.	2.5	15
57	Promoting the uptake of chloride ions by ZnCo–Cl layered double hydroxide electrodes for enhanced capacitive deionization. Environmental Science: Nano, 2021, 8, 1886-1895.	4.3	14
58	Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect. Nanotechnology, 2020, 31, 095402.	2.6	12
59	Uniform carbon hollow sphere for highly efficient electrosorption. Journal of Porous Materials, 2016, 23, 1575-1580.	2.6	11
60	Random oriented hexagonal nickel hydroxide nanoplates grown on graphene as binder free anode for lithium ion battery with high capacity. Chemical Physics Letters, 2018, 699, 167-170.	2.6	11
61	Capacity fading of nanoporous carbon electrode derived from ZIF-8 during insertion-desertion of lithium ions. Chemical Physics Letters, 2018, 712, 7-12.	2.6	11
62	Rational design of reduced graphene oxide film for solar thermal desalination. Water Science and Technology: Water Supply, 2019, 19, 1704-1710.	2.1	11
63	Performance of a novel epoxy crack sealant for asphalt pavements. International Journal of Pavement Engineering, 2022, 23, 3068-3081.	4.4	11
64	Two-step sintering of submicro-grain Ni0.54Mn1.26Fe1.2O4 NTC ceramics with an excellent electrical performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 20144-20153.	2.2	10
65	The feasibility of hollow echinus-like NiCo ₂ O ₄ nanocrystals for hybrid capacitive deionization. Environmental Science: Water Research and Technology, 2020, 6, 283-289.	2.4	10
66	Ultrathin carbon boosted sodium storage performance in aqueous electrolyte. Functional Materials Letters, 2020, 13, 2030002.	1.2	10
67	The improved anode performance enabled by Ni ₂ P@C embedded in echinus-like porous carbon for lithium-ion battery. Nanotechnology, 2020, 31, 215405.	2.6	10
68	Reduced graphene oxide supported quasi-two-dimensional ZnCo ₂ O ₄ nanosheets for lithium ion batteries with high electrochemical stability. Nanotechnology, 2020, 31, 045402.	2.6	9
69	Preparation of TiO ₂ /Ti ₃ C ₂ T <i>_x</i> Composite for Hybrid Capacitive Deionization. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 283.	1.3	9
70	Synthesis of lithium vanadate/reduced graphene oxide with strong coupling for enhanced capacitive extraction of lithium ions. Separation and Purification Technology, 2021, 262, 118294.	7.9	9
71	Hydrothermal synthesis of Zn-doped Ni–Mn–Al–O thin films toward high-performance negative temperature coefficient thermistor. Journal of Materials Science: Materials in Electronics, 2018, 29, 9025-9032.	2.2	8
72	Construction of 3D nanoarchitectural porous carbon supported carbon nanotubes@CoP with enhanced lithium ions storage performance. Chemical Physics Letters, 2019, 732, 136633.	2.6	8

#	Article	IF	CITATIONS
73	The pseudo-capacitive deionization behaviour of CuAl-mixed metal oxides. Environmental Science: Water Research and Technology, 2020, 6, 296-302.	2.4	8
74	Template-Sacrificing Synthesis of Ni-Co Layered Double Hydroxides Polyhedron as Advanced Anode for Lithium Ions Battery. Frontiers in Chemistry, 2020, 8, 581653.	3.6	8
75	Exploration of the Exceptional Capacitive Deionization Performance of CoMn ₂ O ₄ Microspheres Electrode. Energy and Environmental Materials, 2023, 6, .	12.8	8
76	Highly graphitic porous carbon prepared <i>via</i> K ₂ FeO ₄ -assisted KOH activation for supercapacitors. New Journal of Chemistry, 2022, 46, 14338-14345.	2.8	8
77	In situ growth of NaTiO2 nanotubes on Ti3C2Fx for enhanced sodium ion batteries. Materials Letters, 2022, 309, 131457.	2.6	7
78	Electrosorption Behavior of Carbon Nanotube and Carbon Nanofiber Film Electrodes. Current Physical Chemistry, 2011, 1, 16-26.	0.2	6
79	The lithium ions storage behavior of heteroatom-mediated echinus-like porous carbon spheres: From co-doping to multi-atom doping. Journal of Colloid and Interface Science, 2020, 567, 54-64.	9.4	6
80	Engineering of 3D Na _x CoO ₂ nanostructures for enhanced capacitive deionization: performance and mechanism. Environmental Science: Nano, 2021, 8, 657-665.	4.3	6
81	The Hydrolyzed Mil-88B(Fe) With Improved Surface Area for High-Capacity Lithium Ion Battery. Frontiers in Energy Research, 2021, 9, .	2.3	6
82	Kinetics and isotherm studies on electrosorption of NaCl by activated carbon fiber, carbon nanotube and carbon nanotubeâ€carbon nanofiber composite film. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 55-58.	0.8	5
83	A facile strategy to prepare (N, Ni, P) tri-doped echinus-like porous carbon spheres as advanced anode for lithium ion batteries. Nanotechnology, 2019, 30, 495403.	2.6	5
84	A novel phosphatizing strategy to engineering CoO/Co1.94P@carbon polyhedron heterostructures for enhanced lithium-ion battery. Journal of Materials Science, 2021, 56, 3346-3353.	3.7	5
85	Role of Explicitly Included Solvents on Ultrafast Electron Injection and Recombination Dynamics at TiO ₂ /Dye Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 49174-49181.	8.0	4
86	Lithiumâ€lon Batteries: In Situ Growth of CoP ₃ /Carbon Polyhedron/CoO/NF Nanoarrays as Binderâ€Free Anode for Lithiumâ€lon Batteries with Enhanced Specific Capacity (Small 11/2020). Small, 2020, 16, 2070059.	10.0	4
87	Templated synthesis of nano-LiCoO2 cathode for lithium-Ion batteries with enhanced rate capability. Materials Letters, 2021, 303, 130570.	2.6	4
88	Engineering of porous graphene oxide membranes for solar steam generation with improved efficiency. Environmental Science: Water Research and Technology, 0, , .	2.4	4
89	Electrical Removal Behavior of Carbon Nanotube and Carbon Nanofiber Film in CuCl2Solution: Kinetics and Thermodynamics Study. International Journal of Electrochemistry, 2011, 2011, 1-8.	2.4	3
90	On the origin of enhanced electrochemical behavior of oxidized activated carbon. Chemical Physics, 2016, 475, 54-60.	1.9	3

#	Article	IF	CITATIONS
91	One-step synthesis of Ni-Mn-Al-O thin film on Al 2 O 3 substrate via hydrothermal method. Microelectronic Engineering, 2017, 182, 53-56.	2.4	3
92	Enhancing the Li+ Diffusion in Li3VO4 by Coupling with Reduced Graphene Oxide for Lithium-Ion Batteries. Current Nanoscience, 2022, 18, 61-67.	1.2	3
93	Designing hollowed carbon@Si cubic nanobox@reduced graphene oxide nanostructures for lithium-ion battery with high capacity and long cyclic stability. Functional Materials Letters, 2020, 13, 2050042.	1.2	3
94	Highly Efficient Capacitive Deionization Enabled by NiCo ₄ MnO _{8.5} Electrodes. Global Challenges, 2022, 6, 2100095.	3.6	3
95	SURFACE METALIZATION ON THE PHOTO-EMISSION, PHOTO-ABSORPTION AND CORE-LEVEL SHIFT OF NANOSOLID SILICON. Surface Review and Letters, 2009, 16, 265-270.	1.1	2
96	FABRICATION AND CHARACTERIZATION OF Ni – Mn – Si – Al – O NTC THERMISTOR AND ITS APPLICATION AS TEMPERATURE WIRE SENSOR. Functional Materials Letters, 2013, 06, 1350039.	1.2	2
97	Improving the water transpiration in a solar steam generation device. Water Science and Technology: Water Supply, 2020, 20, 59-64.	2.1	2
98	Understanding the Enhanced Capacitive Desalination Performance of Spherical ZnCo 2 O 4 Electrode. Advanced Materials Interfaces, 2021, 8, 2100125.	3.7	2
99	Enabling Enhanced Lithium Ion Storage Performance of Graphdiyne by Doping with Group-15 Elements: A First-Principles Study. ACS Omega, 2021, 6, 1456-1464.	3.5	2
100	Preparation of SiO2 nanocomposites with aligned distributing glass fibre using freeze-drying process. Processing and Application of Ceramics, 2017, 11, 201-205.	0.8	2
101	OPTICAL TRANSITION OF POROUS SILICON PREPARED AT DIFFERENT ANODIZATION TEMPERATURES. Surface Review and Letters, 2009, 16, 351-354.	1.1	1
102	Sulfonated Reduced Graphene Oxide: A High Performance Anode Material for Lithium Ion Battery. Nano, 2015, 10, 1550054.	1.0	1
103	Rational synthesis of graphitic porous carbon with high content nitrogen doping via ultra-fast pyrolysis of ZIF-8 for electrochemical capacitor with enhanced performance. Functional Materials Letters, 2019, 12, 1951004.	1.2	1
104	A facile strategy to prepare NiCoP nanoparticles wrapped in nitrogen doped porous carbon spheres for high-performance lithium-ion battery. Materials Letters, 2020, 269, 127648.	2.6	1
105	Advances in the charging mechanisms for supercapacitor by <italic>in situ</italic> characterization methods. Scientia Sinica Chimica, 2018, 48, 31-44.	0.4	1
106	<i>In situ</i> preparation of an anatase/rutile-TiO ₂ /Ti ₃ C ₂ T _{<i>x</i>} hybrid electrode for durable sodium ion batteries. RSC Advances, 2022, 12, 12219-12225.	3.6	1
107	Study of electrochemical supercapacitors utilizing carbon nanotubes electrodes and PVA-hybrid polyacid electrolytes. , 2008, , .		0
108	Visible-light assisted reduction of graphene oxide and its potential applications in water treatment. Functional Materials Letters, 2014, 07, 1450015.	1.2	0

#	Article	IF	CITATIONS
109	Electrosorption of different cations and anions with membrane capacitive deionization based on carbon nanotube/nanofiber electrodes and ion-exchange membranes. , 0, , 266-271.		0

110 The study of membrane capacitive deionization from charge efficiency. , 0, 42, 210-215.