List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744704/publications.pdf Version: 2024-02-01

IF CITATIONS

1	Synthesis and characterization of the pentazolate anion <i>cyclo</i> -N ₅ ˉ in (N) Tj ETQq1 1 0.75 Science, 2017, 355, 374-376.	84314 rgB 12.6	T /Overloc 386
2	A series of energetic metal pentazolate hydrates. Nature, 2017, 549, 78-81.	27.8	340
3	Recent advances in the syntheses and properties of polynitrogen pentazolate anion <i>cyclo</i> -N ₅ ^{â^'} and its derivatives. Chemical Society Reviews, 2018, 47, 7522-7538.	38.1	127
4	A series of energetic <i>cyclo</i> -pentazolate salts: rapid synthesis, characterization, and promising performance. Journal of Materials Chemistry A, 2019, 7, 12468-12479.	10.3	105
5	Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework. Applied Catalysis A: General, 2014, 477, 125-131.	4.3	96
6	Stabilization of the Pentazolate Anion in Three Anhydrous and Metalâ€Free Energetic Salts. Chemistry - an Asian Journal, 2018, 13, 924-928.	3.3	77
7	Amino-tetrazole functionalized fused triazolo-triazine and tetrazolo-triazine energetic materials. Chemical Communications, 2019, 55, 6062-6065.	4.1	77
8	A carbon-free inorganic–metal complex consisting of an all-nitrogen pentazole anion, a Zn(<scp>ii</scp>) cation and H ₂ O. Dalton Transactions, 2017, 46, 14088-14093.	3.3	76
9	Self-assembled energetic 3D metal–organic framework [Na ₈ (N ₅) ₈ (H ₂ O) ₃] _n based on <i>cyclo</i> N ₅ [–] . Dalton Transactions, 2018, 47, 1398-1401.	3.3	76
10	Moisture-induced degradation and its mechanism of (Sr,Ca)AlSiN ₃ :Eu ²⁺ , a red-color-converter for solid state lighting. Journal of Materials Chemistry C, 2015, 3, 3181-3188.	5.5	75
11	Syntheses, Crystal Structures and Properties of a Series of 3D Metal–Inorganic Frameworks Containing Pentazolate Anion. Chemistry - an Asian Journal, 2018, 13, 1669-1673.	3.3	65
12	Controllable Hydrothermal Synthesis of Ni/Co MOF as Hybrid Advanced Electrode Materials for Supercapacitor. Journal of the Electrochemical Society, 2019, 166, A1799-A1805.	2.9	62
13	Combination of four oxadiazole rings for the generation of energetic materials with high detonation performance, low sensitivity and excellent thermal stability. Journal of Materials Chemistry A, 2017, 5, 11063-11070.	10.3	54
14	In situ synthesized 3D metal–organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials. Dalton Transactions, 2017, 46, 11046-11052.	3.3	50
15	Embellishing bis-1,2,4-triazole with four nitroamino groups: advanced high-energy-density materials with remarkable performance and good stability. Journal of Materials Chemistry A, 2020, 8, 11752-11760.	10.3	50
16	Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5â^'. Science China Materials, 2019, 62, 122-129.	6.3	46
17	C ₈ N ₁₂ O ₈ : A Promising Insensitive High-Energy-Density Material. Crystal Growth and Design, 2018, 18, 6150-6154.	3.0	44
18	[N-N=N-N]-linked fused triazoles with π-π stacking and hydrogen bonds: Towards thermally stable, Insensitive, and highly energetic materials. Chemical Engineering Journal, 2021, 406, 126817.	12.7	43

ARTICLE

#

#	Article	IF	CITATIONS
19	Synthesis of novel magnetic silica supported hybrid ionic liquid combining TEMPO and polyoxometalate and its application for selective oxidation of alcohols. RSC Advances, 2012, 2, 8265.	3.6	41
20	βâ€cyclodextrinâ€capped palladium nanoparticleâ€catalyzed ligandâ€free Suzuki and Heck couplings in Iowâ€melting βâ€cyclodextrin/NMU mixtures. Applied Organometallic Chemistry, 2014, 28, 635-640.	3.5	40
21	Hydrogen Bonding Network: Stabilization of the Pentazolate Anion in Two Nonmetallic Energetic Salts. Crystal Growth and Design, 2019, 19, 1853-1859.	3.0	39
22	1-Nitro-2-trinitromethyl substituted imidazoles: a new family of high performance energetic materials. Journal of Materials Chemistry A, 2016, 4, 17791-17800.	10.3	38
23	Dancing with 5-substituted monotetrazoles, oxygen-rich ions, and silver: towards primary explosives with positive oxygen balance and excellent energetic performance. Journal of Materials Chemistry A, 2019, 7, 4611-4618.	10.3	38
24	Azo1,3,4-oxadiazole as a Novel Building Block to Design High-Performance Energetic Materials. Crystal Growth and Design, 2019, 19, 839-844.	3.0	38
25	Self-assembly of silver(<scp>i</scp>)-based high-energy metal–organic frameworks (HE-MOFs) at ambient temperature and pressure: synthesis, structure and superior explosive performance. Chemical Communications, 2017, 53, 7489-7492.	4.1	36
26	Oxygen-Enriched Metal–Organic Frameworks Based on 1-(Trinitromethyl)-1 <i>H</i> -1,2,4-Triazole-3-Carboxylic Acid and Their Thermal Decomposition and Effects on the Decomposition of Ammonium Perchlorate. ACS Applied Materials & Interfaces, 2021, 13, 21516-21526.	8.0	36
27	Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials. Journal of Physical Chemistry A, 2015, 119, 8250-8255.	2.5	35
28	Study on the one-pot oxidative esterification of glycerol with MOF supported polyoxometalates as catalyst. Catalysis Science and Technology, 2015, 5, 3383-3393.	4.1	34
29	LiN5: A novel pentazolate salt with high nitrogen content. Chemical Engineering Journal, 2022, 429, 132399.	12.7	33
30	Synthesis of novel magnetic chitosan supported protonated peroxotungstate and its catalytic performance for oxidation. New Journal of Chemistry, 2012, 36, 2587.	2.8	32
31	Highly efficient N-formylation of amines with ammonium formate catalyzed by nano-Fe ₃ O ₄ in PEG-400. RSC Advances, 2014, 4, 1234-1240.	3.6	32
32	Syntheses of Energetic <i>cyclo</i> â€Pentazolate Salts. Chemistry - an Asian Journal, 2019, 14, 2877-2882.	3.3	32
33	Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C–H bond activation in the presence of β-cyclodextrin. Green Chemistry, 2011, 13, 3079.	9.0	30
34	3D-Cube Layer Stacking: A Promising Strategy for High-Performance Insensitive Energetic Materials. Crystal Growth and Design, 2017, 17, 6105-6110.	3.0	27
35	Alkali Metalsâ€Based Energetic Coordination Polymers as Promising Primary Explosives: Crystal Structures, Energetic Properties, and Environmental Impact. Chemistry - A European Journal, 2018, 24, 14213-14219.	3.3	27
36	Regioselectivity nitration of aromatics with N2O5 in PEG-based dicationic ionic liquid. Tetrahedron Letters, 2011, 52, 1452-1455.	1.4	26

#	Article	IF	CITATIONS
37	Polyoxometalateâ€Based Metal–Organic Frameworks as Catalysts for the Selective Oxidation of Alcohols in Micellar Systems. ChemPlusChem, 2014, 79, 872-878.	2.8	26
38	Electrochemical Nonacidic Nâ€Nitrosation/Nâ€Nitration of Secondary Amines through a Biradical Coupling Reaction. Advanced Synthesis and Catalysis, 2020, 362, 5036-5043.	4.3	26
39	Facile and efficient hydrolysis of organic halides, epoxides, and esters with water catalyzed by ferric sulfate in a PEG1000-DAIL[BF4]/toluene temperature-dependent biphasic system. New Journal of Chemistry, 2011, 35, 292-298.	2.8	24
40	The hydration of nitriles catalyzed by simple transition metal salt of the fourth period with the aid of acetaldoxime. Applied Organometallic Chemistry, 2012, 26, 377-382.	3.5	23
41	Bi-functionalized PEG ₁₀₀₀ ionic liquid [Imim-PEG ₁₀₀₀ -TEMPO][CuCl ₂ ^{â^'}]: an efficient and reusable catalytic system for solvent-free aerobic oxidation of alcohols. New Journal of Chemistry, 2014, 38, 4149-4154.	2.8	23
42	Copper nanoparticles on dichromium trioxide: a highly efficient catalyst from copper chromium hydrotalcite for oxidantâ€free dehydrogenation of alcohols. Applied Organometallic Chemistry, 2015, 29, 152-156.	3.5	23
43	Green and Efficient Methods for One-Pot Aerobic Oxidative Synthesis of Benzimidazoles from Alcohols with TEMPO-PEG ₄₀₀₀ -NHC-Cu(II) Complex in Water. Synthetic Communications, 2015, 45, 1476-1483.	2.1	22
44	Plant-mediated synthesis of Au–Pd alloy nanoparticles supported on MnO ₂ nanostructures and their application toward oxidation of 5-(hydroxymethyl)furfural. RSC Advances, 2015, 5, 85579-85585.	3.6	22
45	Tetracyclic pyrazine-fused furazans as insensitive energetic materials: syntheses, structures, and properties. Organic and Biomolecular Chemistry, 2018, 16, 8034-8037.	2.8	22
46	Nitramino-functionalized tetracyclic oxadiazoles as energetic materials with high performance and high stability: crystal structures and energetic properties. CrystEngComm, 2018, 20, 4321-4328.	2.6	22
47	Functionalized Ionic Liquid Promoted Azaâ€Michael Addition of Aromatic Amines. Journal of the Chinese Chemical Society, 2010, 57, 1221-1226.	1.4	21
48	An Efficient and Eco-friendly MoO3–SiO2 Solid Acid Catalyst for Electrophilic Aromatic Nitration with N2O5. Catalysis Letters, 2011, 141, 1814-1820.	2.6	21
49	Structure, stability and intramolecular interaction of M(N ₅) ₂ (M = Mg, Ca, Sr) Tj ETQq1	1 0.7843 3.6	814 rgBT /Ov 21
50	One-step synthesis of honeycomb-like Ni/Mn-PMo12 ultra-thin nanosheets for high-performance asymmetric supercapacitors. Applied Surface Science, 2019, 497, 143760.	6.1	21
51	Combination of Polynitropyrazole and 5-Amino-1,2,4-oxadiazole Derivatives: An Approach to High Performance Energetic Materials. Crystal Growth and Design, 2020, 20, 3737-3746.	3.0	20
52	Theoretical studies on the stability of phenylpentazole and its substituted derivatives of –OH, –OCH ₃ , –OC ₂ H ₅ and –N(CH ₃) ₂ . RSC Advances, 2014, 4, 56095-56101.	3.6	19
53	Investigation on the Stability of Multisubstituted Arylpentazoles and the Influence on the Generation of Pentazolate Anion. Journal of Energetic Materials, 2016, 34, 103-111.	2.0	19
54	Oxidation of Benzyl Halides to Aldehydes and Ketones with Potassium Nitrate Catalyzed by Phase-Transfer Catalyst in Aqueous Media. Synthetic Communications, 2008, 38, 4188-4197.	2.1	18

13

#	Article	IF	CITATIONS
55	A series of high-energy coordination polymers with 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: syntheses, structures, and performance. Journal of Materials Chemistry A, 2017, 5, 18854-18861.	10.3	18
56	Achieving Good Molecular Stability in Nitrogen-rich Salts Based on Polyamino Substituted Furazan-triazole. Crystal Growth and Design, 2020, 20, 6084-6092.	3.0	18
57	Chloromethylation of Aromatic Compounds Catalyzed by Surfactant Micelles in Oil–Water Biphasic System. Catalysis Letters, 2009, 131, 485-493.	2.6	17
58	Pd Nanoparticles Immobilized on Fe3O4 @ Poly(ethylene glycol) Bridged Amine Functionalized Imidazolium Ionic Liquid: A Magnetically Separable Catalyst for Heck in Water. Catalysis Letters, 2015, 145, 1549-1556.	2.6	17
59	Co (II) 12 alkyl carbon chain multiâ€functional ionic liquid immobilized on nanoâ€SiO 2 nanoâ€SiO 2 @CoCl 3 12IL as an efficient cooperative catalyst for C–H activation by direct acylation of aryl halides with aldehydes. Applied Organometallic Chemistry, 2018, 32, e4096.	3.5	17
60	Pentazole anion cyclo-N5â^': a rising star in nitrogen chemistry and energetic materials. Science China Chemistry, 2018, 61, 1355-1358.	8.2	17
61	Pyrazolo[1,5- <i>a</i>]pyrimidine with similar "amino–nitro–amino―arrangement characteristics to TATB: a novel heat-resistant explosive with fused structure. CrystEngComm, 2021, 23, 2801-2808.	2.6	17
62	Facile and Efficient Reductive Homocoupling of Benzyl and Aryl Halides Catalyzed by Ionic Liquid [C12mim][CuCl2] in the Presence of Metallic Zinc and Copper. Catalysis Letters, 2011, 141, 467-473.	2.6	16
63	3â€Methylâ€4â€oxaâ€5â€ezahomoadamantane as an Organocatalyst for the Aerobic Oxidation of Primary Amine to Oximes in Water. Advanced Synthesis and Catalysis, 2015, 357, 1175-1180.	2S 4.3	16
64	Copperâ€catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles and benzothiazoles from aromatic alcohols under solventâ€free conditions in open air at room temperature. Applied Organometallic Chemistry, 2013, 27, 606-610.	3.5	15
65	Energetic furazan–triazoles with high thermal stability and low sensitivity: facile synthesis, crystal structures and energetic properties. CrystEngComm, 2019, 21, 6093-6099.	2.6	15
66	Cationic and anionic energetic materials based on a new amphotère. Science China Materials, 2019, 62, 751-758.	6.3	15
67	Oxidative Coupling of <i>o</i> -Phenylenediamine with Arylmethylamines to Synthesize Aryl-Substituted Benzimidazoles Under Catalyst-Free and Solvent-Free Conditions. Synthetic Communications, 2014, 44, 2520-2528.	2.1	14
68	Pentazolate Anion Cyclo-N5â^: Development of a New Energetic Material. Engineering, 2020, 6, 964-966.	6.7	14
69	Novel metal–organic frameworks assembled from the combination of polynitro-pyrazole and 5-nitroamine-1,2,4-oxadiazole: synthesis, structure and thermal properties. Dalton Transactions, 2021, 50, 12906-12912.	3.3	14
70	Regioselective Nitration of Aromatics with Nanomagnetic Solid Superacid SO ₄ ^{2â^'} /ZrO ₂ â€M _{<i>x</i>} O _{<i>y</i>} â€Fe _{ and Its Theoretical Studies. ChemPlusChem, 2013, 78, 310-317.}	3 2/8 ub>0	< \$8 b>4
71	Highly efficient synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by ionic liquid [Heemim][ZrCl5]. RSC Advances, 2015, 5, 67886-67891.	3.6	13

72Synthesis of Benzimidazoles via Iron-Catalyzed Aerobic Oxidation Reaction of Imine Derivatives with
<i>>o</i>2.121

#	Article	IF	CITATIONS
73	Aerobic oxidative synthesis of 2-arylbenzimidazoles, 2-arylbenzoxazoles, and 2-arylbenzothiazoles from arylmethanols or arylmethylamines catalyzed by Fe(III)/TEMPO under solvent-free conditions. Journal of the Iranian Chemical Society, 2015, 12, 771-778.	2.2	13
74	Salt Formation: Route To Improve Energetic Performance and Molecular Stability Simultaneously. Crystal Growth and Design, 2020, 20, 197-205.	3.0	13
75	Aerobic Oxidation of Benzylic Halides to Carbonyl Compounds with Molecular Oxygen Catalyzed by TEMPO/KNO ₂ in Aqueous Media. Synthetic Communications, 2010, 40, 1106-1114.	2.1	12
76	<i>In situ</i> Synthesized Energetic Salts Based on the Câ^'N Fused Tricyclic 3,9â€Diamineâ€6,7â€Dihydroâ€Bis(triazolo)â€Tetrazepine Cation: A Family of Highâ€Performance Energetic Materials. Propellants, Explosives, Pyrotechnics, 2018, 43, 595-601.	1.6	12
77	Efficient and Convenient Oxidation of Organic Halides to Aldehydes and Ketones Catalyzed by H ₅ IO ₆ /V ₂ O ₅ in Ionic Liquid [bmpy][PF ₆]. Journal of the Chinese Chemical Society, 2010, 57, 28-33.	1.4	11
78	Metal-Free: A Novel and Efficient Aerobic Oxidation of Primary Amines to Oximes Using N,N′,N″-Trihydroxyisocyanuric Acid and Acetaldoxime as Catalysts in Water. Synlett, 2014, 25, 1873-1878.	1.8	11
79	A highly waterâ€dispersible and magnetically separable palladium catalyst based on functionalized poly(ethylene glycol)â€supported iminophosphine for Suzuki–Miyaura coupling in water. Applied Organometallic Chemistry, 2015, 29, 419-424.	3.5	11
80	Efficient Mo(VI)-Catalyzed Hydration of Nitrile with Acetaldoxime. Synthetic Communications, 2014, 44, 474-480.	2.1	10
81	Comparative theoretical studies of high energetic cyclic nitramines. Journal of Physical Organic Chemistry, 2014, 27, 10-17.	1.9	10
82	Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 â^' and metallic cations Na+, Fe2+ and Ni2+. Structural Chemistry, 2015, 26, 785-792.	2.0	10
83	A Green and Effective Approach of Two-Step 2,2′,4,4′,6,6′-Hexanitrostilbene Preparation and Its Industria Scale Study. Organic Process Research and Development, 2016, 20, 668-674.	2.7	10
84	A kinetic investigation of thermal decomposition of 1,1â€2-dihydroxy-5,5â€2-bitetrazole-based metal salts. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1213-1220.	3.6	10
85	Syntheses, Structures, and Properties of Polynitro-Substituted 5,6-Dihydrodiimidazo[1,2- <i>a</i> :2′,1′- <i>c</i>]pyrazine Energetic Compounds. Crystal Growth and Design, 2022, 22, 3914-3923.	3.0	10
86	Theoretical investigations of pyridine derivatives as potential high energy density materials. Journal of Physical Organic Chemistry, 2013, 26, 211-217.	1.9	9
87	A green and efficient method for synthesis of benzimidazoles using nanoâ€Fe 3 O 4 in PEGâ€400/H 2 O aqueous system under ambient conditions at room temperature. Applied Organometallic Chemistry, 2014, 28, 436-440.	3.5	9
88	MOF derived Bi2MoO6/TiO2 nanohybrids: enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation. Research on Chemical Intermediates, 2018, 44, 6431-6444.	2.7	9
89	Recent research on the synthesis pentazolate anion cyclo-N5â^'. FirePhysChem, 2021, 1, 33-45.	3.4	9
90	Facile and Efficient Amination of Organic Halides Catalyzed by Copper Sulfate in PEG ₁₀₀₀ â€ÐIL/Methylcyclohexane Temperatureâ€Đependent Biphasic System. Journal of the Chinese Chemical Society, 2010, 57, 604-611.	1.4	8

#	Article	IF	CITATIONS
91	Palladium nanoparticles embedded in improved mesoporous silica: a pHâ€triggered phase transfer catalyst for Sonogashira reaction. Applied Organometallic Chemistry, 2015, 29, 674-677.	3.5	8
92	Green and reusable homogeneous oxidative system with ceric ammonium nitrate/[Imimâ€PEG ₁₀₀₀ â€TEMPO] for efficient aerobic oxidation of alcohols and oneâ€pot synthesis of benzimidazoles from alcohols under ambient conditions. Applied Organometallic Chemistry, 2015, 29, 109-112.	3.5	8
93	Manganese dioxide and <i>N</i> , <i>N</i> ′, <i>N</i> â€3â€trihydroxyisocyanuric acid: a novel and recyclable catalytic system for aerobic oxidation of toluene derivatives in PEGâ€1000â€based dicationic acidic ionic liquid. Applied Organometallic Chemistry, 2015, 29, 276-279.	3.5	8
94	Aerobic oxidative synthesis of benzimidazoles from amines catalyzed by 3-methyl-4-oxa-5-azahomoadamantane and iron(III) chloride. Research on Chemical Intermediates, 2015, 41, 10017-10025.	2.7	8
95	Boosting the performance of energetic materials through thermally-induced conformational transition. CrystEngComm, 2019, 21, 796-799.	2.6	8
96	Higher performing and less sensitive CN7â^'-based high-energy-density material. Science China Materials, 2020, 63, 1779-1787.	6.3	8
97	Complex of [BMIm] PF ₆ with PEG ₁₀₀₀ : a high efficient and recycle system for palladiumâ€catalyzed Suzuki crossâ€coupling and Heck reaction. Applied Organometallic Chemistry, 2012, 26, 305-309.	3.5	7
98	<scp>l</scp> â€Proline: an efficient N,Oâ€bidentate ligand for copperâ€catalyzed intramolecular cyclization reaction of 2â€iodoanilines with nitriles for the synthesis of benzimidazoles. Applied Organometallic Chemistry, 2014, 28, 764-767.	3.5	7
99	Pyridylpentazole and its derivatives: a new source of N ₅ ^{â^'} ?. RSC Advances, 2015, 5, 27699-27705.	3.6	7
100	From mono-rings to bridged bi-rings to caged bi-rings: a promising design strategy for all-nitrogen high-energy-density materials N10 and N12. New Journal of Chemistry, 2021, 45, 6379-6385.	2.8	7
101	Nitrogen-rich ion salts of 1-hydroxytetrazole-5-hydrazide: a new series of energetic compounds that combine good stability and high energy performance. Dalton Transactions, 2022, 51, 10216-10220.	3.3	7
102	Selective Oxidation of Sulfides to Sulfoxides/Sulfones by 30% Hydrogen Peroxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 822-830.	1.6	6
103	Theoretical studies on high energetic density nitramine explosives containing pyridine. Science China Chemistry, 2012, 55, 1903-1909.	8.2	6
104	A Novel and Efficient Synthesis of Hexanitrostilbene by N-Hydroxyphthalimide/FeCl ₂ -Catalyzed Aerobic Dehydrogenation of Hexanitrobibenzyl. Journal of Energetic Materials, 2013, 31, 217-223.	2.0	6
105	Preparation of heteropoly acid based amphiphilic salts supported by nano oxides and their catalytic performance in the nitration of aromatics. RSC Advances, 2013, 3, 2197.	3.6	6
106	Molecular Design of New Nitramine Explosive: 1,3,5,7-Tetraaza-1,2,3,5, 6,7-hexahydros-indacene Derivatives. Polycyclic Aromatic Compounds, 2013, 33, 297-309.	2.6	6
107	Iron-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles direct from oximes in water. Research on Chemical Intermediates, 2016, 42, 471-479.	2.7	6
108	Modification of crystalline energetic salts through polymorphic transition: enhanced crystal density and energy performance. CrystEngComm, 2020, 22, 4130-4135.	2.6	6

#	Article	IF	CITATIONS
109	A low sensitivity energetic cocrystal of ammonium pentazolate. Journal of Energetic Materials, 2023, 41, 99-116.	2.0	6
110	Occurrence, Distribution, and Ecological Risk Assessment of Antibiotics in Different Environmental Media in Anqing, Anhui Province, China. International Journal of Environmental Research and Public Health, 2021, 18, 8112.	2.6	6
111	C ₅ H ₂ N ₁₄ O ₆ : achieving azido-based materials with zero oxygen balance and good energetic performance. New Journal of Chemistry, 2021, 45, 20542-20546.	2.8	6
112	Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis. Science in China Series B: Chemistry, 2009, 52, 893-899.	0.8	5
113	Application of Wittig Reaction in Synthesis of Novel Pyridine Dicarboxylic Acid Derivatives with High Ligand Activity. Synthetic Communications, 2011, 41, 3403-3408.	2.1	5
114	Efficient Aerobic Oxidative Synthesis of Benzimidazoles with Fe(III) based PEG ₁₀₀₀ Dicationic Imidazolium Ionic Liquid/toluene Temperatureâ€dependent Biphasic System. Journal of the Chinese Chemical Society, 2015, 62, 103-106.	1.4	5
115	Compatibility study of NaN ₅ with traditional energetic materials and HTPB propellant components. Journal of Energetic Materials, 2020, 38, 445-454.	2.0	5
116	Catalytic wet air oxidation of aromatic compounds: degradation in molybdovanadophosphoric polyoxometalates micellar system under room temperature conditions. Journal of the Iranian Chemical Society, 2013, 10, 123-129.	2.2	4
117	A Facile and Efficient Catalytic System for the Oxidation of Alcohols withÂGold(III) and Ionic Liquid Immobilized TEMPO under Solvent-Free Conditions. Synlett, 2014, 25, 2459-2462.	1.8	4
118	Copper(II) Acetate-Catalysed Conversion of Aldoximes to Amides under Mild Conditions. Journal of Chemical Research, 2016, 40, 594-596.	1.3	4
119	Theoretical study on benzoheterocycle based energetic materials, effect of heterocyclic-fused, conjugation, hydrogen bond, and substitutional group on the detonation performance. Journal of Molecular Modeling, 2018, 24, 40.	1.8	4
120	Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials. Journal of Molecular Modeling, 2018, 24, 173.	1.8	4
121	Solvent effects on the geometry, electronic structure, and bonding style of Zn(N 5) 2 : A theoretical study. Journal of the Chinese Chemical Society, 2020, 67, 235-241.	1.4	4
122	Thermal Decomposition Kinetics of Potential Solid Propellant Combustion Catalysts Fe(II), Zn(II), Hydroxylammonium, and Hydrazinium Pentazolates. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.6	4
123	Salt Formation, to Realize a Good Combination of High Energy and Low Sensitivity of Nitroform-Based Energetic Compounds. Crystal Growth and Design, 2022, 22, 167-173.	3.0	4
124	[Na ₄ (N ₅) ₄ (H ₂ O) ₂]·H ₂ O·2MeC a honeycomb-like sodium pentazolate framework with helical chains. CrystEngComm, 2022, 24, 4853-4856.)H: 2.6	4
125	A PEG1000-DAIL[CdCl3]–toluene temperature-dependent biphasic system that regulates homogeneously catalyzed C–O coupling of organic halides with phenols and alcohols under ligand-free conditions. Canadian Journal of Chemistry, 2011, 89, 471-480.	1.1	3
126	An Efficient Synthetic Method for 2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo[4.3.0]nonane-8-one. Journal of Energetic Materials, 2012, 30, 30-39.	2.0	3

#	Article	IF	CITATIONS
127	Theoretical investigation on the structures, densities, and detonation properties of polynitrotetraazaoctahydroanthracenes. International Journal of Quantum Chemistry, 2012, 112, 2794-2800.	2.0	3
128	Efficient and convenient oxidation of alcohols to aldehydes and ketones with H2O2/(NH4)6Mo7O24·4H2O regulated by PEG1000-DIL/methylcyclohexane temperature-dependent biphasic system. Journal of the Iranian Chemical Society, 2013, 10, 453-460.	2.2	3
129	Preparation, characterization, and catalytic performance of a novel TEMPO-functionalized acid magnetic catalyst. Monatshefte Für Chemie, 2013, 144, 1671-1677.	1.8	3
130	Computational studies on 3,5,7,10,12,14,15,16-octanitro-3,5,7,10,12,14,15,16-octaaza-pentacyclo[7.5.1.12,8.04,13.06,11]hexadecane as potential high-energy-density compound. Structural Chemistry, 2013, 24, 139-145.	2.0	3
131	Nanocomposite shuttle-supported palladium nanoparticles as a PH-triggered phase transfer catalyst for the aerobic oxidation of alcohols. Journal of the Iranian Chemical Society, 2015, 12, 1213-1219.	2.2	3
132	The importance of molecular conformation to the properties: a DFT study of the polynitro heterocyclic compounds based on dodecahydrodiimidazo [4,5-b:4′,5′-e]pyrazine structure. Structural Chemistry, 2015, 26, 667-674.	2.0	3
133	Green Oxidation Process in the Synthesis of LLMâ€105 with H ₂ O ₂ /Peroxotungstate System and its Theoretical Study. Journal of Heterocyclic Chemistry, 2016, 53, 1386-1394.	2.6	3
134	Improving properties of energetic coordination polymers through structural modulation from 1D to 3D without changes of ligands or metal nodes. CrystEngComm, 2019, 21, 937-940.	2.6	3
135	From BTO ^{2â^'} to HBTO ^{â^'} insensitive energetic salt: a route to boost energy. CrystEngComm, 2019, 21, 3873-3880.	2.6	3
136	Dissociative adsorption modes of TATB on the Al (111) surface: a DFT investigation. RSC Advances, 2019, 9, 11745-11754.	3.6	3
137	Theoretical Insights on the High Pressure Behavior of Pentazolate Anion Complex [Co(H2O)4(N5)2]·4H2O. Scientific Reports, 2019, 9, 15648.	3.3	3
138	All-nitrogen ion-based compounds as energetic oxidizers: a theoretical study on [N5+][NO3â^'], [N5+][N(NO2)2â^'], [NO2+][N5â^'] and NO2–N3. New Journal of Chemistry, 2020, 44, 11188-11195.	2.8	3
139	Pentazolate coordination polymers self-assembled by <i>in situ</i> generated [Pb ₄ (OH) ₄] ⁴⁺ cubic cations trapping <i>cyclo</i> -N ₅ ^{â^} . Dalton Transactions, 2022, 51, 5801-5809.	3.3	3
140	Theoretical study on Nâ€oxide pentazolate highâ€energyâ€density materials: Toward excellent energetic performance and good stability. Journal of Physical Organic Chemistry, 2022, 35, .	1.9	3
141	Continuous and Electrochemical Synthesis of 2,2',4,4',6,6'â€Hexanitrostilbene. ChemElectroChem, 2(9, .)22, 3.4	3
142	Density Functional Theory Studies on Intermolecular Interactions of 4â€Aminoâ€3,5â€dinitropyrazole with NH ₃ and H ₂ O. Journal of the Chinese Chemical Society, 2012, 59, 550-556.	1.4	2
143	Modification with ultrasonication for enhanced properties of cobalt-based zeolitic imidazolate framework. MRS Communications, 2018, 8, 1363-1370.	1.8	2
144	First Structural Characterization of Solvateâ€Free Silver 5â€Nitrotetrazolate and its Comparison with other Energetic Silver Compounds in Structure and Property. Propellants, Explosives, Pyrotechnics, 2019, 44, 803-806.	1.6	2

#	Article	IF	CITATIONS
145	Density functional theory studies on two novel polyâ€nitrogen compounds: N 5 + N 3 â^' and N 5 + N 5 â^'. Journal of Physical Organic Chemistry, 2021, 34, e4135.	1.9	2
146	C 4 N 8 O 6 : A Promising Ternary CNO ompound With Good Detonation Performance And Low Sensitivity. Propellants, Explosives, Pyrotechnics, 2021, 46, 1286-1291.	1.6	2
147	Fascinating 3D energetic [Ag ₂ (N ₅) ₂ (EDA)] _{<i>n</i>} : filling the ethylenediamine molecules into a [Ag(N ₅)] _{<i>n</i>} framework. CrystEngComm, 2022, 24, 1900-1906.	2.6	2
148	Improved Preparation of 3,3′,4,4′â€Tetramethyldiphenylethane by Self Coupling Reaciton in Aqueous Media. Journal of the Chinese Chemical Society, 2009, 56, 1056-1063.	[.] 1.4	1
149	Biomimetic Cleavage of Aryl–Nitrogen Bonds in N-Arylazoles Catalyzed by Metalloporphyrins. Catalysis Letters, 2018, 148, 2636-2642.	2.6	1
150	Synthesis, characterization, and crystal structure of 2-oxo-5-nitro-3-(5-nitroimino-1,3,4-oxadiazole-2-yl)-pyrazine. Energetic Materials Frontiers, 2022, 3, 32-37.	3.2	1
151	An interesting 3D energetic metal - framework based Ag(I) ions and 3,4-diaminofurazan. Journal of Energetic Materials, 0, , 1-13.	2.0	1
152	A Solventâ€free energetic coordination polymer [N, Nâ€(3,4â€dinitropyrazolate)Ag]: synthesis, structure and energetic performance. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	1
153	Nitration of toluene with N <inf>2</inf> 0 <inf>5</inf> catalyzed by SiO <inf>2</inf> anchored sulfonic acid (SiO <inf>2</inf> -SO <inf>3</inf> H). , 2011, , .		0
154	Dehydrogenation of nitro derivatives of bibenzyl to corresponding nitro stilbene with dioxygen catalyzed by 2,2,6,6-tetramethylpiperidine-1-oxyl. Journal of the Iranian Chemical Society, 2012, 9, 971-975.	2.2	0
155	Symmetry, Conjugated System, and <i>N</i> -oxides in 2,4,6-Trinitro-1,3,5-triazine-1,3,5-trioxides: A New Design Concept for Energetic Oxidizers. Journal of Energetic Materials, 2017, 35, 63-76.	2.0	0
156	Synthesis and crystal structure of 5-((5-amino-2H-tetrazol-2-yl)methyl)-1,3,4-oxadiazol-2-amine. Molecular Crystals and Liquid Crystals, 2021, 724, 38-46.	0.9	0
157	Carbon skeleton: route to investigate high-performance insensitive energetic materials. New Journal of Chemistry, 2022, 46, 6690-6693.	2.8	0