Michal M Mazur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744550/publications.pdf Version: 2024-02-01

ΜΙCΗΛΙ Μ ΜΑΖΙΙΡ

#	Article	IF	CITATIONS
1	Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Materials Research Bulletin, 2022, 147, 111646.	2.7	16
2	Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure. Beilstein Journal of Nanotechnology, 2022, 13, 265-273.	1.5	2
3	Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels. Journal of Materials Engineering and Performance, 2022, 31, 6998-7008.	1.2	5
4	Selected properties of Al <i>_x</i> Zn <i>_y</i> O thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target. Beilstein Journal of Nanotechnology, 2022, 13, 344-354.	1.5	2
5	High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target. Materials, 2021, 14, 1228.	1.3	7
6	Multifunctional Nanocrystalline Cu–Ti Thin Films Enhance Survival and Induce Proliferation of Mouse Fibroblasts In Vitro. Coatings, 2021, 11, 300.	1.2	2
7	Properties of Metallic and Oxide Thin Films Based on Ti and Co Prepared by Magnetron Sputtering from Sintered Targets with Different Co-Content. Materials, 2021, 14, 3797.	1.3	7
8	Analysis of amorphous tungsten oxide thin films deposited by magnetron sputtering for application in transparent electronics. Applied Surface Science, 2021, 570, 151151.	3.1	29
9	Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. International Journal of Hydrogen Energy, 2020, 45, 13586-13595.	3.8	33
10	Thermophysical properties of refractory W-50.4%Re and Mo-39.5%Re thin alloy layers deposited on silicon and silica substrates. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105147.	1.7	4
11	Influence of Material Composition on Structure, Surface Properties and Biological Activity of Nanocrystalline Coatings Based on Cu and Ti. Coatings, 2020, 10, 343.	1.2	7
12	Influence of post-process annealing temperature on structural, optical, mechanical and corrosion properties of mixed TiO2WO3 thin films. Thin Solid Films, 2020, 698, 137856.	0.8	3
13	Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application. Materials and Design, 2019, 175, 107822.	3.3	25
14	Characterization of HfO2 Optical Coatings Deposited by MF Magnetron Sputtering. Coatings, 2019, 9, 106.	1.2	44
15	Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications. Energy, 2019, 173, 809-819.	4.5	57
16	Analysis of electrical properties of forward-to-open (Ti,Cu)Ox memristor rectifier with elemental gradient distribution prepared using (multi)magnetron co-sputtering process. Materials Science in Semiconductor Processing, 2019, 94, 9-14.	1.9	9
17	The effect of post-process annealing on optical and electrical properties of mixed HfO2–TiO2 thin film coatings. Journal of Materials Science: Materials in Electronics, 2019, 30, 6358-6369.	1.1	6
18	Investigations of elemental composition and structure evolution in (Ti,Cu)-oxide gradient thin films prepared using (multi)magnetron co-sputtering. Surface and Coatings Technology, 2018, 334, 150-157.	2.2	15

MICHAL M MAZUR

#	Article	IF	CITATIONS
19	Memristive properties of transparent oxide semiconducting (Ti,Cu)O <i>_x</i> -gradient thin film. Semiconductor Science and Technology, 2018, 33, 015002.	1.0	7
20	Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow. Coatings, 2018, 8, 412.	1.2	52
21	Analysis of memristor-like behaviors in Au/Ti52Cu48Ox/TiAlV structure with gradient elements distribution. Materials Science in Semiconductor Processing, 2018, 87, 167-173.	1.9	1
22	Influence of magnetron powering mode on various properties of TiO ₂ thin films. Materials Science-Poland, 2018, 36, 748-760.	0.4	3
23	Modification of various properties of HfO2 thin films obtained by changing magnetron sputtering conditions. Surface and Coatings Technology, 2017, 320, 426-431.	2.2	19
24	Comparison of structural, mechanical and corrosion properties of TiO 2 -WO 3 mixed oxide films deposited on TiAlV surface by electron beam evaporation. Applied Surface Science, 2017, 421, 185-190.	3.1	8
25	Influence of europium on structure modification of TiO2 thin films prepared by high energy magnetron sputtering process. Surface and Coatings Technology, 2017, 320, 132-137.	2.2	7
26	Analysis of the properties of functional titanium dioxide thin films deposited by pulsed DC magnetron sputtering with various O2:Ar ratios. Optical Materials, 2017, 69, 96-104.	1.7	25
27	Influence of doping with Co, Cu, Ce and Fe on structure and photocatalytic activity of TiO ₂ nanoparticles. Materials Science-Poland, 2017, 35, 725-732.	0.4	13
28	An impact of the copper additive on photocatalytic and bactericidal properties of TiO ₂ thin films. Materials Science-Poland, 2017, 35, 421-426.	0.4	6
29	Influence of Material Composition on Structural and Optical Properties of HfO2-TiO2 Mixed Oxide Coatings. Coatings, 2016, 6, 13.	1.2	9
30	Effect of the structure on biological and photocatalytic activity of transparent titania thin-film coatings. Materials Science-Poland, 2016, 34, 856-862.	0.4	6
31	Comparison of structural, mechanical and corrosion properties of (Ti0.68W0.32)Ox and (Ti0.41W0.59)Ox thin films, deposited on TiAlV surface by electron beam evaporation. Surface and Coatings Technology, 2016, 307, 596-602.	2.2	5
32	Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates. Materials Science-Poland, 2016, 34, 418-426.	0.4	10
33	Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process. Materials Science-Poland, 2015, 33, 660-668.	0.4	29
34	Influence of nanocrystalline structure and surface properties of TiO ₂ thin films on the viability of L929 cells. Polish Journal of Chemical Technology, 2015, 17, 33-39.	0.3	7
35	Investigation of microstructure, micro-mechanical and optical properties of HfTiO 4 thin films prepared by magnetron co-sputtering. Materials Research Bulletin, 2015, 72, 116-122.	2.7	17
36	Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells. Materials Science and Engineering C, 2015, 56, 48-56.	3.8	52

MICHAL M MAZUR

#	Article	IF	CITATIONS
37	Investigation of structural, optical and micro-mechanical properties of (NdyTi1â^'y)Ox thin films deposited by magnetron sputtering. Materials and Design, 2015, 85, 377-388.	3.3	13
38	Influence of the structural and surface properties on photocatalytic activity of TiO ₂ :Nd thin films. Polish Journal of Chemical Technology, 2015, 17, 103-111.	0.3	5
39	Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1at.%) thin films. Optical Materials, 2015, 42, 423-429.	1.7	10
40	Effect of Nd doping on structure and improvement of the properties of TiO2 thin films. Surface and Coatings Technology, 2015, 270, 57-65.	2.2	21
41	Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films. Optical Materials, 2015, 48, 172-178.	1.7	14
42	Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu1â^'y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications. Materials Science and Engineering C, 2015, 47, 211-221.	3.8	43
43	Optical and electrical properties of (Ti-V)Ox thin film as n-type Transparent Oxide Semiconductor. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 583-588.	0.8	3
44	Influence of Nd-Doping on Photocatalytic Properties of TiO ₂ Nanoparticles and Thin Film Coatings. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	22
45	Investigation of physicochemical properties of (Ti-V)Ox (4.3at.% of V) functional thin films and their possible application in the field of transparent electronics. Applied Surface Science, 2014, 304, 73-80.	3.1	4
46	Enhanced ultraviolet GaN photo-detector response on Si(111) via engineered oxide buffers with embedded Y2O3/Si distributed Bragg reflectors. Applied Physics Letters, 2014, 104, .	1.5	22
47	Surface and mechanical characterization of ITO coatings prepared by microwaveâ€assisted magnetron sputtering process. Surface and Interface Analysis, 2014, 46, 827-831.	0.8	9
48	Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering. Materials Science-Poland, 2014, 32, 457-464.	0.4	7
49	Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application. Applied Surface Science, 2014, 301, 63-69.	3.1	45
50	Investigations of reversible optical transmission in gasochromic (Ti–V–Ta)Ox thin film for gas sensing applications. Sensors and Actuators B: Chemical, 2014, 201, 420-425.	4.0	8
51	Structural and surface properties of TiO2 thin films doped with neodymium deposited by reactive magnetron sputtering. Materials Science-Poland, 2013, 31, 71-79.	0.4	7
52	Investigation of physicochemical and tribological properties of transparent oxide semiconducting thin films based on Ti-V oxides. Materials Science-Poland, 2013, 31, 434-445.	0.4	7
53	Characterization and properties of multicomponent oxide thin films with gasochromic effect. , 2013, ,		1
54	TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-electronics Review, 2013, 21, .	2.4	89

MICHAL M MAZUR

#	Article	IF	CITATIONS
55	Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO ₂ :Tb Thin Films. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	44
56	Photocatalytic properties of transparent TiO2 coatings doped with neodymium. Polish Journal of Chemical Technology, 2012, 14, 1-7.	0.3	9
57	P-type transparent Ti–V oxides semiconductor thin film as a prospective material for transparent electronics. Thin Solid Films, 2012, 520, 3472-3476.	0.8	12
58	Electrical and antistatic properties of magnetron sputtered thin films based on TiO2:(V, Ta). , 2011, , .		1
59	Synthesis and photocatalytic activity of undoped and doped TiO2 nanopowders. , 2011, , .		0
60	Long-term stability of gasochromic effect in TiO2:(W, Cr, Mo) thin film. , 2011, , .		2
61	Analysis of substrate type and thickness influence on wettability of Nb2O5 thin films. , 2011, , .		2
62	Optical and electrical properties of nanocrystalline TiO2:Pd semiconducting oxides. Open Physics, 2011, 9, 313-318.	0.8	5
63	Hardness of nanocrystalline TiO. , 2010, , .		1
64	Sheet resistance and optical properties of ITO thin films deposited by magnetron sputtering with different O. , 2010, , .		2
65	Influence of droplet size and surface preparation of TiO. , 2010, , .		1
66	Optical and structural properties of V. , 2010, , .		0
67	Influence of thickness on transparency and sheet resistance of ITO thin films. , 2010, , .		14
68	Investigation of antistatic properties of spectacle lenses with antireflective coatings. , 2010, , .		0
69	Humidity influence on antistatic properties of optical coatings. , 2010, , .		1
70	Antistatic Properties of Nanofilled Coatings. Acta Physica Polonica A, 2010, 117, 869-872.	0.2	10
71	Influence of Tb-dopant on water adsorption and wettability of TiO <inf>2</inf> thin films. , 2009, , .		1
72	Investigation of gasochromic effects in TiO <inf>2</inf> thin films doped with W, Cr, Mo. , 2009, , .		1

#	Article	IF	CITATIONS
73	Study of antistatic properties of TiO <inf>2</inf> ∶Tb and TiO <inf>2</inf> ∶(Tb,Pd) thin films obtained by magnetron sputtering process. , 2009, , .		1
74	Electrical investigation of transparent thin films based on TiO <inf>2</inf> doped with palladium and vanadium. , 2009, , .		1
75	Structural, electrical and surface static charge investigation of TiO <inf>2</inf> thin films doped with different amount of vanadium. , 2009, , .		0
76	Hardness of Nanocrystalline TiO ₂ Thin Films. Journal of Nano Research, 0, 18-19, 195-200.	0.8	41