Jeff Dahn

List of Publications by Citations

Source: https://exaly.com/author-pdf/5744463/jeff-dahn-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48,787 106 567 199 h-index g-index citations papers 53,585 589 5.3 7.99 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
567	Mechanisms for Lithium Insertion in Carbonaceous Materials. <i>Science</i> , 1995 , 270, 590-593	33.3	1664
566	Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 2091-2097	3.9	1288
565	Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 2045-2052	3.9	1232
564	High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1271	3.9	1111
563	Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 2009-2013	3.9	1051
562	Colossal Reversible Volume Changes in Lithium Alloys. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A137		961
561	Synthesis and Electrochemistry of LiNi x Mn2 lk O 4. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 205-213	3.9	931
560	The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A803	3.9	920
559	In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A838	3.9	882
558	Understanding the Anomalous Capacity of Li/Li[Ni[sub x]Li[sub (1/3½x/3)]Mn[sub (2/3¼/3)]]O[sub 2] Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A815	3.9	850
557	Layered Cathode Materials Li[Ni[sub x]Li[sub (1/30x/3)]Mn[sub (2/31/3)]]O[sub 2] for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A191		780
556	Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3½x/3]Mn[sub 2/3½/3]]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A778	3.9	767
555	Phase diagram of LixC6. <i>Physical Review B</i> , 1991 , 44, 9170-9177	3.3	684
554	An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A156	3.9	668
553	Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass. Journal of the Electrochemical Society, 1997 , 144, 2943-2948	3.9	541
552	Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. <i>Carbon</i> , 1996 , 34, 193-200	10.4	525
551	Layered Li[Ni[sub x]Co[sub 1 2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A200		502

550	Rechargeable LiNiO2 / Carbon Cells. Journal of the Electrochemical Society, 1991, 138, 2207-2211	3.9	489	
549	Sodium Carboxymethyl Cellulose. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, A17		486	
548	In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A1225	3.9	477	
547	Reaction of Li with Alloy Thin Films Studied by In Situ AFM. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1457	3.9	464	
546	Alloy Design for Lithium-Ion Battery Anodes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A849	3.9	392	
545	Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 2068-2077	3.9	386	
544	Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: I. The Sn2Fe - C System. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 405-413	3.9	350	
543	Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. <i>Electrochimica Acta</i> , 2004 , 49, 1079-1090	6.7	332	
542	A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. <i>Journal of Power Sources</i> , 2002 , 108, 8-14	8.9	331	
541	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. <i>Nature Energy</i> , 2019 , 4, 683-689	62.3	329	
540	Structure and Electrochemistry of Li[Ni[sub x]Co[sub 12x]Mn[sub x]]O[sub 2] (08/1/2). <i>Journal of the Electrochemical Society</i> , 2002 , 149, A1332	3.9	329	
539	Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2Cathode Material for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1401-A1408	3.9	298	
538	On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 59-68	3.9	291	
537	Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A755	3.9	283	
536	Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A196	3.9	254	
535	Lithium Insertion in High Capacity Carbonaceous Materials. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 2581-2590	3.9	254	
534	Synthesis and Characterization of Li1 + \times Mn2 O 4 for Li-Ion Battery Applications. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 100-114	3.9	250	
533	Lithium Insertion in Carbons Containing Nanodispersed Silicon. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 326-332	3.9	241	

532	Ab initio calculation of the lithium-tin voltage profile. <i>Physical Review B</i> , 1998 , 58, 15583-15588	3.3	233
531	Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. <i>Carbon</i> , 2005 , 43, 179-188	10.4	232
530	Ex Situ and In Situ Stability Studies of PEMFC Catalysts. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2309	3.9	229
529	Predicting and Extending the Lifetime of Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1451-A1456	3.9	220
528	ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. <i>Electrochemistry Communications</i> , 2004 , 6, 39-43	5.1	210
527	An In Situ Small-Angle X-Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 44.	2 ફે .9	208
526	Interpreting High Precision Coulometry Results on Li-ion Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1136	3.9	205
525	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li[sub 0.5]CoO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A1205	3.9	203
524	Staging Phase Transitions in Li[sub x]CoO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A160	04 .9	199
523	Structure and electrochemistry of Li Mn Ni1D2. Solid State Ionics, 1992, 57, 311-318	3.3	198
522	A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A51	3.9	197
521	Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2Positive Electrode Materials for High Voltage Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1534-A1544	3.9	187
520	A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A447	3.9	186
519	In-Situ Detection of Lithium Plating Using High Precision Coulometry. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A959-A964	3.9	183
518	Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1195-1201	3.9	179
517	Lithium Insertion in Hydrogen-Containing Carbonaceous Materials. <i>Chemistry of Materials</i> , 1996 , 8, 389-	-3 <u>9</u> .8	174
516	Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: III. Sn2Fe: SnFe3 C Active/Inactive Composites. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 423-427	3.9	171
515	Hysteresis during Lithium Insertion in Hydrogen-Containing Carbons. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2137-2145	3.9	171

514	Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 Chemistry of Materials, 2003, 15, 3214-32	29 .6	170
513	The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A149	3.9	167
512	The falling cards modellfor the structure of microporous carbons. Carbon, 1997, 35, 825-830	10.4	166
511	The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. <i>Electrochemistry Communications</i> , 2007 , 9, 2534-2540	5.1	166
510	In Situ X-Ray Study of the Electrochemical Reaction of Li with IP-Cu[sub 6]Sn[sub 5]. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1658	3.9	164
509	Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A429-A439	3.9	163
508	First Principles Model of Amorphous Silicon Lithiation. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A454	3.9	162
507	A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3031-A3	10 4 4	160
506	Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. <i>Electrochimica Acta</i> , 2007 , 52, 6346-6352	6.7	160
505	Lithium-Ion Cells with Aqueous Electrolytes. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1742-174	16 3.9	160
504	NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, A1		158
503	Lithium polyacrylate as a binder for tindobaltdarbon negative electrodes in lithium-ion batteries. <i>Electrochimica Acta</i> , 2010 , 55, 2991-2995	6.7	155
502	Economical Sputtering System To Produce Large-Size Composition-Spread Libraries Having Linear and Orthogonal Stoichiometry Variations. <i>Chemistry of Materials</i> , 2002 , 14, 3519-3523	9.6	155
501	Conductivity of electrolytes for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 1991 , 35, 59-8	32 8.9	155
500	Structure and Electrochemistry of Layered Li[Cr[sub x]Li[sub (1/3월/3)]Mn[sub (2/3월x/3)]]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A1454	3.9	154
499	Lithium Intercalation from Aqueous Solutions. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 2310-2	3 1.6	153
498	Combinatorial Study of Sn[sub 1☑]Co[sub x] (0. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A361	3.9	152
497	Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: II. The Sn-Fe System. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 414-422	3.9	151

A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries. Electrochemical and

119

Solid-State Letters, 2010, 13, A177

478	The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2© raphite Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1194	3.9	118	
477	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. <i>Nature Energy</i> , 2020 , 5, 693-702	62.3	118	
476	Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 1995 , 54, 240-245	8.9	117	
475	The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi0.8Mn0.1Co0.1O2Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A65	55 ² /866	5 ¹¹⁶	
474	Synthesis of Single Crystal LiNi0.6Mn0.2Co0.2O2with Enhanced Electrochemical Performance for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1038-A1045	3.9	116	
473	An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2019 , 31, 7574-7583	9.6	116	
472	Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-Ion Batteries. Journal of the Electrochemical Society, 2015 , 162, A278-A283	3.9	115	
471	Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells. Journal of the Electrochemical Society, 2013 , 160, A117-A124	3.9	113	
470	Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 3482-3491	3.9	112	
469	Effects of solvents and salts on the thermal stability of LiC6. <i>Electrochimica Acta</i> , 2004 , 49, 4599-4604	6.7	111	
468	In Situ X-ray Diffraction Study of Layered LiNiMnIIo Oxides: Effect of Particle Size and Structural Stability of CoreBhell Materials. <i>Chemistry of Materials</i> , 2016 , 28, 162-171	9.6	109	
467	Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-Ion Batteries. Journal of the Electrochemical Society, 2013 , 160, A521-A527	3.9	109	
466	Layered T2-, O6-, O2-, and P2-Type A2/3[M½+1/3M4+2/3]O2Bronzes, A = Li, Na; M⅓ Ni, Mg; M = Mn, Ti. <i>Chemistry of Materials</i> , 2000 , 12, 2257-2267	9.6	109	
465	The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3237	3.9	108	
464	Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29608-29622	3.8	107	
463	Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1668-A1674	3.9	107	
462	High-Capacity Carbons Prepared from Phenolic Resin for Anodes of Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 1995 , 142, L211-L214	3.9	107	
461	Studies of Aromatic Redox Shuttle Additives for LiFePO[sub 4]-Based Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2390	3.9	106	

460	Phase Diagram of LiMnD Spinel in Air. <i>Chemistry of Materials</i> , 1999 , 11, 3065-3079	9.6	106
459	Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. <i>Physical Review B</i> , 1995 , 51, 734-741	3.3	106
458	A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A21-A30	3.9	104
457	TinII ransition Metal II arbon Systems for Lithium-Ion Battery Negative Electrodes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A597	3.9	104
456	Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1291-A1299	3.9	103
455	Survey of Gas Expansion in Li-Ion NMC Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A796-A802	3.9	103
454	Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22322-22330	3.8	103
453	A Māsbauer effect investigation of the LiBn system. <i>Journal of Alloys and Compounds</i> , 1999 , 289, 135-14	2 5.7	103
452	A small angle X-ray scattering study of carbons made from pyrolyzed sugar. <i>Carbon</i> , 1996 , 34, 499-503	10.4	103
45 ¹	Structure-refinement program for disordered carbons. <i>Journal of Applied Crystallography</i> , 1993 , 26, 827	-8.36	100
450	Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. <i>Physical Review B</i> , 2006 , 74,	3.3	98
449	Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures. <i>Chemistry of Materials</i> , 2000 , 12, 3583-3590	9.6	97
448	Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A234	3.9	96
447	Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A255	3.9	95
446	Oxygen reduction activity of Pt and PtMntto electrocatalysts sputtered on nano-structured thin film support. <i>Electrochimica Acta</i> , 2007 , 53, 688-694	6.7	94
445	Phenothiazine Molecules. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A288	3.9	94
444	Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1998	3.9	94
443	Comparison of mechanically alloyed and sputtered tinflobaltflarbon as an anode material for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2008 , 10, 25-31	5.1	93

44	12	A Systematic Study of Electrolyte Additives in Li[Ni1/3Mn1/3Co1/3]O2(NMC)/Graphite Pouch Cells. Journal of the Electrochemical Society, 2014 , 161, A1818-A1827	3.9	92	
44	41	Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF[sub 6] EC/DEC. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, A180		92	
44	40	Studies of the Capacity Fade Mechanisms of LiCoO2/Si-Alloy: Graphite Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1146-A1156	3.9	92	
43	39	A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A5008-A5018	3.9	91	
43	38	Synthesis, Characterization, and Thermal Stability of LiNi1/3Mn1/3Co1/3dMgzO2, LiNi1/3dMn1/3Co1/3MgzO2, and LiNi1/3dMn1/3dCo1/3MgzO2d Chemistry of Materials, 2010 , 22, 1164-13	192	91	
43	37	Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1417	3.9	90	
43	36	High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss. <i>Chemistry of Materials</i> , 2015 , 27, 757-767	9.6	89	
43	35	Behavior of Nitrogen-Substituted Carbon(NzC1½)in Li/Li(NzC1½)6 Cells. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 900-907	3.9	89	
43	34	Electrolyte Design for Fast-Charging Li-Ion Batteries. <i>Trends in Chemistry</i> , 2020 , 2, 354-366	14.8	88	
43	33	Reduction of the Irreversible Capacity in Hard-Carbon Anode Materials Prepared from Sucrose for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 1977-1981	3.9	88	
43	32	In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A588-A594	3.9	86	
43	31	On the Reduction of Lithium Insertion Capacity in Hard-Carbon Anode Materials with Increasing Heat-Treatment Temperature. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 2252-2257	3.9	85	
43	30	Morphology and Safety of Li[Ni[sub x]Co[sub 1½x]Mn[sub x]]O[sub 2] (0½½/2). <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1299	3.9	84	
42	29	Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 4430-4439	2.8	84	
42	28	Photoelectron spectroscopy measurements of the band gap in porous silicon. <i>Applied Physics Letters</i> , 1993 , 63, 2911-2913	3.4	84	
42	27	In situ growth of layered, spinel, and rock-salt LiCoO2 by laser ablation deposition. <i>Journal of Applied Physics</i> , 1994 , 76, 2799-2806	2.5	84	
42	26	Interactions between Positive and Negative Electrodes in Li-Ion Cells Operated at High Temperature and High Voltage. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A546-A551	3.9	83	
42	<u>2</u> 5	Synthesis of Single Crystal LiNi0.5Mn0.3Co0.2O2for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3529-A3537	3.9	83	

424	An Autocatalytic Mechanism for the Reaction of Lix CoO2 in Electrolyte at Elevated Temperature. Journal of the Electrochemical Society, 2000 , 147, 970	3.9	83
423	The High Temperature Phase Diagram of Li1 + x Mn2 িk O 4 and Its Implications. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 1783-1788	3.9	83
422	Structural Study of the LiMnNi Oxide Pseudoternary System of Interest for Positive Electrodes of Li-Ion Batteries. <i>Chemistry of Materials</i> , 2013 , 25, 989-999	9.6	82
421	Understanding Irreversible Capacity in Li[sub x]Ni[sub 1囚]Fe[sub y]O[sub 2] Cathode Materials. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3598	3.9	82
420	In situ X-ray diffraction experiments on lithium intercalation compounds. <i>Canadian Journal of Physics</i> , 1982 , 60, 307-313	1.1	80
419	Long-Term Low-Rate Cycling of LiCoO2/Graphite Li-Ion Cells at 55LC. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A705-A710	3.9	79
418	The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 159, A85-A90	3.9	79
417	A Comparative Study of a Family of Sulfate Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A264-A274	3.9	78
416	Design and Testing of a 64-Channel Combinatorial Electrochemical Cell. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1465	3.9	78
415	Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance. <i>Joule</i> , 2019 , 3, 745-761	27.8	78
414	The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 154, 287-293	6.7	77
413	In-situ 119Sn MBsbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass. <i>Electrochimica Acta</i> , 1999 , 45, 51-58	6.7	77
412	Model of micropore closure in hard carbon prepared from sucrose. <i>Carbon</i> , 1999 , 37, 1399-1407	10.4	77
411	Coprecipitation Synthesis of NixMn1⊠(OH)2 Mixed Hydroxides ☐ Chemistry of Materials, 2010 , 22, 1015-1	0 21	76
410	Electrochemical Characterization of the Active Surface in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A770	3.9	76
409	Carbons prepared from coals for anodes of lithium-ion cells. <i>Carbon</i> , 1996 , 34, 1501-1507	10.4	76
408	A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. <i>Journal of Power Sources</i> , 2016 , 327, 145-150	8.9	76
407	Comparative Study on Prop-1-ene-1,3-sultone and Vinylene Carbonate as Electrolyte Additives for Li(Ni1/3Mn13Co1/3)O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1634-A	∆∮841	75

406	Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite Lithium-Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1046-A1054	3.9	73	
405	Electrolyte System for High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2016, 163, A25	571 ₃ ,4325	78 ₇₃	
404	Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A445	3.9	73	
403	In Situ Investigations of SEI Layer Growth on Electrode Materials for Lithium-Ion Batteries Using Spectroscopic Ellipsometry. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A198-A207	3.9	72	
402	Study of the Electrochemical Performance of Sputtered Si[sub 1 \mathbb{N}]Sn[sub x] Films. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A1628	3.9	72	
401	Reactivity of charged LiVPO4F with 1M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. <i>Electrochemistry Communications</i> , 2009 , 11, 589-591	5.1	71	
400	Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, A130		71	
399	Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2689-A2696	3.9	70	
398	Extraordinary Oxygen Reduction Activity of Pt3Ni7. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B910	3.9	70	
397	Electrochemical Lithium Intercalation in VO 2 (B) in Aqueous Electrolytes. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2730-2735	3.9	70	
396	Synthesis and Characterization of the Lithium-Rich CoreBhell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade. <i>Chemistry of Materials</i> , 2015 , 27, 3366-3377	9.6	69	
395	A Cell for In Situ X-Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 554-557	3.9	69	
394	Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A21	3.9	69	
393	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: II. LiMn[sub 2]O[sub 4] charged to 4.2 V. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A1211	3.9	69	
392	New Chemical Insights into the Beneficial Role of AlO Cathode Coatings in Lithium-ion Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 14095-14100	9.5	68	
391	Synthesis of Single Crystal LiNi0.88Co0.09Al0.03O2\(\text{with a Two-Step Lithiation Method.}\) Journal of the Electrochemical Society, 2019 , 166, A1956-A1963	3.9	67	
390	Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. <i>Journal of Power Sources</i> , 2016 , 328, 124-135	8.9	67	
389	Effects of Electrolyte Additives and Solvents on Unwanted Lithium Plating in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A1173-A1183	3.9	65	

388	The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co(1/3🛭)AlzO2 with non-aqueous electrolyte. <i>Electrochemistry Communications</i> , 2008 , 10, 1168-1171	5.1	65
387	Layered LiCoO[sub 2] with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 508	3.9	65
386	Characterization of Disordered Li(1+x)Ti2xFe(1Bx)O2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory. <i>Chemistry of Materials</i> , 2015 , 27, 7751-7756	9.6	64
385	H[sub 2]O[sub 2] Release during Oxygen Reduction Reaction on Pt Nanoparticles. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, B208		64
384	Effects of particle size and electrolyte salt on the thermal stability of Li 0.5 CoO 2. <i>Electrochimica Acta</i> , 2004 , 49, 2661-2666	6.7	64
383	Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A937-A943	3.9	63
382	Structure, Electrochemical Properties, and Thermal Stability Studies of Cathode Materials in the xLi[Mn[sub 10]Ni[sub 10]]O[sub 2]?yLiCoO[sub 2]?zLi[Li[sub 10]Mn[sub 20]]O[sub 2] Pseudoternary System (x+y+z=1). <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1879	3.9	63
381	Improving the High Voltage Cycling of Li[Ni0.42Mn0.42Co0.16]O2(NMC442)/Graphite Pouch Cells Using Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A2250-A2254	3.9	62
380	Synthesis, Characterization, and Thermal Stability of Li[Ni1/3Mn1/3Co1/3团(MnMg)z/2]O2. <i>Chemistry of Materials</i> , 2010 , 22, 5065-5073	9.6	62
379	CoIIN Oxygen Reduction Catalysts Prepared by Combinatorial Magnetron Sputter Deposition. Journal of the Electrochemical Society, 2007 , 154, A275	3.9	62
378	A Comparison Between the High Temperature Electrode /Electrolyte Reactions of Li[sub x]CoO[sub 2] and Li[sub x]Mn[sub 2]O[sub 4]. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A663	3.9	62
377	Orthorhombic LiMnO2 as a High Capacity Cathode for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 2906-2910	3.9	62
376	Formation of LayeredDayered Composites in the LiCoMn Oxide Pseudoternary System during Slow Cooling. <i>Chemistry of Materials</i> , 2013 , 25, 912-918	9.6	61
375	In Situ MBsbauer Effect Studies of the Electrochemical Reaction of Lithium with Mechanically Alloyed Sn2Fe. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 4195-4202	3.9	61
374	Evidence for quantum confinement in porous silicon from soft x-ray absorption. <i>Applied Physics Letters</i> , 1992 , 60, 3013-3015	3.4	61
373	Dependence of Cell Failure on Cut-Off Voltage Ranges and Observation of Kinetic Hindrance in LiNi0.8Co0.15Al0.05O2. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2682-A2695	3.9	60
372	Design and Testing of a Low-Cost Multichannel Pseudopotentiostat for Quantitative Combinatorial Electrochemical Measurements on Large Electrode Arrays. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, E15		60
371	Microstructural Observations of Bingle CrystallPositive Electrode Materials Before and After Long Term Cycling by Cross-section Scanning Electron Microscopy. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 020512	3.9	60

370	Combinatorial Studies of Si1NOxas a Potential Negative Electrode Material for Li-Ion Battery Applications. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1587-A1593	3.9	59
369	A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A981-A989	3.9	58
368	Design of Amorphous Alloy Electrodes for Li-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, A310		58
367	Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. <i>Nature Energy</i> , 2020 , 5, 674-683	62.3	58
366	A Survey of In Situ Gas Evolution during High Voltage Formation in Li-Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A760-A767	3.9	57
365	Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A609	3.9	57
364	Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. <i>Solid State Ionics</i> , 1998 , 111, 289-294	3.3	55
363	Combinatorially Prepared [LiF] 1½Fex Nanocomposites for Positive Electrode Materials in Li-Ion Batteries. <i>Chemistry of Materials</i> , 2008 , 20, 454-461	9.6	55
362	Studies of Lithium Insertion in Ballmilled Sugar Carbons. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 62-70	3.9	55
361	Structural, Electrochemical, and Thermal Properties of Nickel-Rich LiNixMnyCozO2 Materials. <i>Chemistry of Materials</i> , 2018 , 30, 8852-8860	9.6	55
360	Studies of Gas Generation, Gas Consumption and Impedance Growth in Li-Ion Cells with Carbonate or Fluorinated Electrolytes Using the Pouch Bag Method. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A340-A347	3.9	54
359	LiPO2F2as an Electrolyte Additive in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A891-A899	3.9	54
358	Synthesis of Spherical and Dense Particles of the Pure Hydroxide Phase Ni[sub 1B]Mn[sub 1B]Co[sub 1B](OH)[sub 2]. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A362	3.9	54
357	Ultrasonic Scanning to Observe Wetting and Dnwetting In Li-Ion Pouch Cells. <i>Joule</i> , 2020 , 4, 2017-2029	27.8	54
356	Study of Electrolyte Components in Li Ion Cells Using Liquid-Liquid Extraction and Gas Chromatography Coupled with Mass Spectrometry. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1167-A1172	3.9	53
355	A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A282	3.9	53
354	Operando X-ray Diffraction Study of Polycrystalline and Single-Crystal LixNi0.5Mn0.3Co0.2O2. Journal of the Electrochemical Society, 2017 , 164, A2992-A2999	3.9	52
353	A Guide to Full Coin Cell Making for Academic Researchers. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A329-A333	3.9	52

352	Fluorinated electrolyte for 4.5 Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. <i>Journal of Power Sources</i> , 2016 , 307, 340-350	8.9	52
351	A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. <i>Journal of Power Sources</i> , 2014 , 251, 311-318	8.9	52
350	Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO2/Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A66	3.9 - A74	52
349	Comparative Study of Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite as Electrolyte Additives for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1084-A1089	3.9	52
348	Building a Smart naillfor penetration tests on Li-ion cells. <i>Journal of Power Sources</i> , 2014 , 247, 821-823	8.9	51
347	The effect of turbostratic disorder on the staging transitions in lithium intercalated graphite. <i>Synthetic Metals</i> , 1995 , 73, 1-7	3.6	51
346	Editors' ChoiceHindering Rollover Failure of Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells during Long-Term Cycling. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A711-A724	3.9	50
345	Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives. <i>Journal of Power Sources</i> , 2015 , 287, 377-385	8.9	50
344	Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells. <i>Electrochimica Acta</i> , 2018 , 263, 237-248	6.7	50
343	A Comparative Study of Vinylene Carbonate and Fluoroethylene Carbonate Additives for LiCoO2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A467-A472	3.9	50
342	Study of Methylene Methanedisulfonate as an Additive for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A84-A88	3.9	50
341	Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surface Science, 2009, 603, 839-86	46 .8	50
340	A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Li©raphite Cells. Journal of the Electrochemical Society, 2011 , 158, A1431	3.9	50
339	Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells. <i>Journal of Power Sources</i> , 2015 , 295, 203-211	8.9	49
338	Measurements of Interdiffusion Coefficients of Transition Metals in Layered LiNiMnto Oxide CoreBhell Materials during Sintering. <i>Chemistry of Materials</i> , 2015 , 27, 7765-7773	9.6	49
337	The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells. <i>Journal of Power Sources</i> , 2015 , 298, 369-378	8.9	49
336	Studies of tintransition metaltarbon and tintrobaltaransition metaltarbon negative electrode materials prepared by mechanical attrition. <i>Journal of Power Sources</i> , 2009 , 194, 794-800	8.9	49
335	Fe-C-N Oxygen Reduction Catalysts Prepared by Combinatorial Sputter Deposition. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A463		49

334	In Situ AFM Measurements of the Expansion and Contraction of Amorphous Sn-Co-C Films Reacting with Lithium. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A213	3.9	49	
333	Comparison of the Reactions Between Li[sub 7/3]Ti[sub 5/3]O[sub 4] or LiC[sub 6] and Nonaqueous Solvents or Electrolytes Using Accelerating Rate Calorimetry. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A2082	3.9	49	
332	Preparation, Structure, and Thermal Stability of New NixCo1-2xMnx(OH)2 (0 な力) Phases. <i>Chemistry of Materials</i> , 2003 , 15, 495-499	9.6	49	
331	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3321-A3325	3.9	49	
330	Ternary Electrolyte Additive Mixtures for Li-Ion Cells that Promote Long Lifetime and Less Reactivity with Charged Electrodes at Elevated Temperatures. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1170-A1174	3.9	48	
329	A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A705-A716	3.9	48	
328	The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7 Determined Using Isothermal Microcalorimetry. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A35-A	1429	48	
327	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2019 , 166, A3342-A3347	3.9	48	
326	First principles studies of silicon as a negative electrode material for lithium-ion batteries. <i>Canadian Journal of Physics</i> , 2009 , 87, 625-632	1.1	48	
325	Ammonia, cyclohexane, nitrogen and water adsorption capacities of an activated carbon impregnated with increasing amounts of ZnCl(2), and designed to chemisorb gaseous NH(3) from an air stream. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 423-35	9.3	48	
324	A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi 0.8 Mn 0.1 Co 0.1 O 2 /graphite pouch cells. <i>Journal of Power Sources</i> , 2016 , 318, 228-234	8.9	48	
323	Some Fluorinated Carbonates as Electrolyte Additives for Li(Ni0.4Mn0.4Co0.2)O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1637-A1645	3.9	47	
322	In Situ [sup 119]Sn Mo ssbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe. Journal of the Electrochemical Society, 2009 , 156, A283	3.9	47	
321	Impedance Reducing Additives and Their Effect on Cell Performance. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1105-A1113	3.9	47	
320	Sulfolane-Based Electrolyte for High Voltage Li(Ni0.42Mn0.42Co0.16)O2(NMC442)/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1424-A1431	3.9	46	
319	The Impact of Vinylene Carbonate, Fluoroethylene Carbonate and Vinyl Ethylene Carbonate Electrolyte Additives on Electrode/Electrolyte Reactivity Studied Using Accelerating Rate Calorimetry. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1495-A1498	3.9	46	
318	Studies of Si[sub 1\(\text{N} \)] C[sub x] Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A865	3.9	46	
317	Development of Electrolytes for Single Crystal NMC532/Artificial Graphite Cells with Long Lifetime. Journal of the Electrochemical Society, 2018 , 165, A626-A635	3.9	45	

316	Exploring Classes of Co-Solvents for Fast-Charging Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2365-A2373	3.9	45
315	Development of Pyridine-Boron Trifluoride Electrolyte Additives for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1186-A1195	3.9	45
314	In Situ AFM Measurements of the Expansion of Nanostructured Sntot Films Reacting with Lithium. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A187	3.9	45
313	MBsbauer effect studies of sputter-deposited tinBobalt and tinBobaltBarbon alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 443, 114-120	5.7	45
312	Comparison of Li[Li[sub 19]Ni[sub 18]Mn[sub 59]]O[sub 2], Li[Li[sub 18]Ni[sub 18]Mn[sub 38]]O[sub 2], LiNi[sub 0.5]Mn[sub 1.5]O[sub 4], and LiNi[sub 28]Mn[sub 18]O[sub 2] as High Voltage Positive Electrode Materials. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A187	3.9	44
311	Dissolution of Transition Metals in Combinatorially Sputtered Pt[sub 1kl]M[sub x]M[sub y][sup ?] (M, M[sup ?]=Co, Ni, Mn, Fe) PEMFC Electrocatalysts. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1835	3.9	44
310	Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A2314	3.9	44
309	Thermal Evolution of the Structure and Activity of Magnetron-Sputtered TMCN (TM=Fe, Co) Oxygen Reduction Catalysts. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, B6		44
308	Quantifying, Understanding and Evaluating the Effects of Gas Consumption in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017 , 164, A3518-A3528	3.9	43
307	Studies of the Effect of Varying Prop-1-ene-1,3-sultone Content in Lithium Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1884-A1889	3.9	43
306	Comparative Study on Methylene Methyl Disulfonate (MMDS) and 1,3-Propane Sultone (PS) as Electrolyte Additives for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A547-A553	3.9	43
305	The Role of Metal Site Vacancies in Promoting LiMnNi© Layered Solid Solutions. <i>Chemistry of Materials</i> , 2013 , 25, 2716-2721	9.6	43
304	Structure and Electrochemistry of Li2Cr x Mn2 lk O 4 for 1.0 ? x ? 1.5. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 851-859	3.9	43
303	The Impact of Electrolyte Oxidation Products in LiNi0.5Mn1.5O4/Li4Ti5O12Cells. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1524-A1528	3.9	42
302	Structural and Electrochemical Study of the LiMnNi Oxide System within the Layered Single Phase Region. <i>Chemistry of Materials</i> , 2014 , 26, 7059-7066	9.6	42
301	Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials. <i>Measurement Science and Technology</i> , 2005 , 16, 212-220	2	42
300	A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. <i>Review of Scientific Instruments</i> , 2001 , 72, 3313-3319	1.7	42
299	Quantifying Changes to the Electrolyte and Negative Electrode in Aged NMC532/Graphite Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2732-A2740	3.9	42

Effects of Upper Cutoff Potential on LaPO4-Coated and Uncoated 298 Li[Ni0.42Mn0.42Co0.16]O2/Graphite Pouch Cells. Journal of the Electrochemical Society, **2016**, 163, A272 3 R280 41 Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in 297 Li(Ni1/3Mn1/3Co1/3)O2/Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1149- $\frac{2}{1}$ 19157 $\frac{4^{11}}{1}$ Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using 296 3.9 41 Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2014, 161, A1782-A1787 Comparative study of Li[Co1🛘Alz]O2 prepared by solid-state and co-precipitation methods. 6.7 295 41 Electrochimica Acta, 2009, 54, 4655-4661 The Rate of Active Lithium Loss from a Soft Carbon Negative Electrode as a Function of 294 41 Temperature, Time and Electrode Potential. Journal of the Electrochemical Society, 2012, 159, A1672-A1681 Al-M (M=Cr, Fe, Mn, Ni) Thin-Film Negative Electrode Materials. Journal of the Electrochemical 293 3.9 41 Society, **2006**, 153, A484 An Epoxy-Silane Approach to Prepare Anode Materials for Rechargeable Lithium Ion Batteries. 292 3.9 41 Journal of the Electrochemical Society, 1995, 142, 2927-2935 X-ray diffraction and x-ray absorption studies of porous silicon, siloxene, heat-treated siloxene, and 291 2.5 41 layered polysilane. Journal of Applied Physics, 1994, 75, 1946-1951 Structural Evolution and High-Voltage Structural Stability of Li(NixMnyCoz)O2 Electrodes. 9.6 290 41 Chemistry of Materials, **2019**, 31, 376-386 Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries. Journal of Power 289 8.9 40 Sources, 2015, 287, 184-195 Effects of Succinonitrile (SN) as an Electrolyte Additive on the Impedance of LiCoO2/Graphite 288 3.9 40 Pouch Cells during Cycling. Journal of the Electrochemical Society, 2014, 161, A506-A512 Storage Studies on Li/Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives. 287 40 3.9 Journal of the Electrochemical Society, **2013**, 160, A709-A714 Magnetron Sputtered Feah, Fea, and CN Based Oxygen Reduction Electrocatalysts. Journal of 286 3.9 40 the Electrochemical Society, 2008, 155, B547 Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells: electrochemical, GC-MS and XPS analysis. Physical 285 3.6 39 Chemistry Chemical Physics, **2015**, 17, 27062-76 Differential Thermal Analysis of Li-Ion Cells as an Effective Probe of Liquid Electrolyte Evolution 284 3.9 39 during Aging. Journal of the Electrochemical Society, 2015, 162, A2577-A2581 An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision 283 Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure 3.9 39 Measurements. Journal of the Electrochemical Society, 2017, 164, A3545-A3555 Synthesis and Characterization of Mg Substituted LiCoO[sub 2]. Journal of the Electrochemical 282 3.9 39 Society, 2010, 157, A782 Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi[sub 1B]Mn[sub 1B]Co[sub (1BD)]Al[sub z]O[sub 2] Positive Electrode Materials. Journal of the Electrochemical 281 3.9 39 Society, 2009, 156, A343

2 80	Computational Estimates of Stability of Redox Shuttle Additives for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1922	3.9	39
279	Ultra High-Precision Studies of Degradation Mechanisms in Aged LiCoO2/Graphite Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1572-A1579	3.9	38
278	Application of in situ MBsbauer effect methods for the study of electrochemical reactions in lithium-ion battery electrode materials. <i>Physical Review B</i> , 1999 , 59, 3494-3500	3.3	38
277	Interdiffusion of Cations from Metal Oxide Surface Coatings into LiCoO2 During Sintering. <i>Chemistry of Materials</i> , 2017 , 29, 5239-5248	9.6	37
276	Special Synergy between Electrolyte Additives and Positive Electrode Surface Coating to Enhance the Performance of Li[Ni0.6Mn0.2Co0.2]O2/Graphite Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2531-A2538	3.9	37
275	Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. <i>Journal of Power Sources</i> , 2014 , 251, 187-194	8.9	37
274	Preparation of Co1ØAlz(OH)2(NO3)z Layered Double Hydroxides and Li(Co1ØAlz)O2. <i>Chemistry of Materials</i> , 2009 , 21, 56-62	9.6	37
273	Ternary and Quaternary Electrolyte Additive Mixtures for Li-Ion Cells That Promote Long Lifetime, High Discharge Rate and Better Safety. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1261-A1265	3.9	36
272	Synthesis of Mg and Mn Doped LiCoO2and Effects on High Voltage Cycling. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1655-A1664	3.9	36
271	Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 130521	3.9	36
270	A Study of Stacking Faults and Superlattice Ordering in Some Li-Rich Layered Transition Metal Oxide Positive Electrode Materials. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1394-A1400	3.9	36
269	Gas Evolution during Unwanted Lithium Plating in Li-Ion Cells with EC-Based or EC-Free Electrolytes. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A3010-A3015	3.9	35
268	The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 154, 227-234	6.7	35
267	Direct comparison of 2,5-di-tert-butyl-1,4-dimethoybenzene and 4-tert-butyl-1,2-dimethoxybenzene as redox shuttles in LiFePO4-based Li-ion cells. <i>Electrochemistry Communications</i> , 2007 , 9, 1497-1501	5.1	35
266	Characterization and PEMFC Testing of Pt[sub 1 \mathbb{N}]M[sub x] (M=Ru,Mo,Co,Ta,Au,Sn) Anode Electrocatalyst Composition Spreads. <i>Journal of the Electrochemical Society</i> , 2007 , 154, B566	3.9	35
265	ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes. <i>Electrochemistry Communications</i> , 2004 , 6, 724-728	5.1	35
264	The Effects of a Ternary Electrolyte Additive System on the Electrode/Electrolyte Interfaces in High Voltage Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1001-A1009	3.9	35
263	Impact of the Synthesis Conditions on the Performance of LiNixCoyAlzO2 with High Ni and Low Co Content. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3544-A3557	3.9	35

(2012-2015)

262	Understanding the Role of Prop-1-ene-1,3-Sultone and Vinylene Carbonate in LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cells: Electrochemical, GC-MS and XPS Analysis. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2635-A2645	3.9	34
261	Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route. Journal of the Electrochemical Society, 2008 , 155, B953	3.9	34
260	On the determination of platinum particle size in carbon-supported platinum electrocatalysts for fuel cell applications. <i>Carbon</i> , 2003 , 41, 2769-2777	10.4	34
259	Reactivity of Li[sub y][Ni[sub x]Co[sub 1½x]Mn[sub x]]O[sub 2] (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A566	3.9	34
258	Exploring Impedance Growth in High Voltage NMC/Graphite Li-Ion Cells Using a Transmission Line Model. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A522-A529	3.9	34
257	Cobalt-Free Nickel-Rich Positive Electrode Materials with a CoreBhell Structure. <i>Chemistry of Materials</i> , 2019 , 31, 10150-10160	9.6	34
256	Temperature Dependent EIS Studies Separating Charge Transfer Impedance from Contact Impedance in Lithium-Ion Symmetric Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3272-A32	7 9 9	33
255	Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research. <i>ACS Combinatorial Science</i> , 2015 , 17, 381-91	3.9	33
254	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. <i>Joule</i> , 2020 , 4, 1296-	1237180	33
253	The reactivity of charged positive Li1-n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. <i>Journal of Power Sources</i> , 2018 , 390, 78-86	8.9	33
252	In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell. <i>Electrochimica Acta</i> , 2015 , 180, 234-240	6.7	33
251	Lithium loss mechanisms during synthesis of layered LixNi2 IkO2 for lithium ion batteries. <i>Solid State Ionics</i> , 2012 , 219, 11-19	3.3	33
250	The Impact of Zr Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li[Ni1/3Mn1/3🗹Co1/3Zrz]O2. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A428	3.9	33
249	Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2. <i>Chemistry of Materials</i> , 2001 , 13, 2078-2083	9.6	33
248	Entropy of the intercalation compound LixMo6Se8 from calorimetry of electrochemical cells. <i>Physical Review B</i> , 1985 , 32, 3316-3318	3.3	33
247	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 020515	3.9	33
246	The Impact of Electrolyte Additives Determined Using Isothermal Microcalorimetry. <i>ECS Electrochemistry Letters</i> , 2013 , 2, A106-A109		32
245	Impedance Reducing Additives and Their Effect on Cell Performance. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1095-A1104	3.9	32

244	A study of the mechanical and electrical properties of a polymer/carbon black binder system used in battery electrodes. <i>Journal of Applied Polymer Science</i> , 2003 , 90, 1891-1899	2.9	32
243	Thermodynamic Stability of Chemically Delithiated Li (Li x Mn2 িk) O 4. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 569-575	3.9	32
242	Investigating the Effects of Magnesium Doping in Various Ni-Rich Positive Electrode Materials for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A4025-A4033	3.9	32
241	Combinations of LiPO2F2and Other Electrolyte Additives in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1718-A1724	3.9	31
240	The Negative Impact of Layered-Layered Composites on the Electrochemistry of Li-Mn-Ni-O Positive Electrodes for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A606-A6	51 ³⁹	31
239	Determination of the Time Dependent Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29533-29541	3.8	31
238	Dependence of the Heat of Reaction of Li[sub 0.81]C[sub 6] (0.1 V), Li[sub 7]Ti[sub 5]O[sub 12] (1.55 V), and Li[sub 0.5]VO[sub 2] (2.45 V) Reacting with Nonaqueous Solvents or Electrolytes on the Average Potential of the Electrode Material. <i>Journal of the Electrochemical Society</i> , 2006 ,	3.9	31
237	153, A310 A novel hermetic differential scanning calorimeter (DSC) sample crucible. <i>Thermochimica Acta</i> , 2002 , 386, 153-160	2.9	31
236	Electrochemical Reaction of the Si[sub 1 \mathbb{N}]Zn[sub x] Binary System with Li. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2335	3.9	31
235	In Situ X-Ray Study of LiMnO2. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 2672-2677	3.9	31
234	Resistance Growth in Lithium-Ion Pouch Cells with LiNi0.80Co0.15Al0.05O2 Positive Electrodes and Proposed Mechanism for Voltage Dependent Charge-Transfer Resistance. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1779-A1784	3.9	30
233	Rapid Impedance Growth and Gas Production at the Li-Ion Cell Positive Electrode in the Absence of a Negative Electrode. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A3069-A3077	3.9	30
232	Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. Journal of Power Sources, 2016 , 324, 704-711	8.9	30
231	Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols. <i>Journal of Power Sources</i> , 2016 , 306, 233-240	8.9	30
230	Structural and electrochemical studies of (SnxCo1½)60C40 alloys prepared by mechanical attriting. <i>Electrochimica Acta</i> , 2009 , 54, 4534-4539	6.7	30
229	Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1日]Co[sub x] (0日0.5) Films. <i>Journal of the Electrochemical Society</i> , 2008 , 155, B108	3.9	30
228	Use of Asymmetric Average Charge- and Average Discharge- Voltages as an Indicator of the Onset of Unwanted Lithium Deposition in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3595-A3601	3.9	30
227	Effect of LiPF6 concentration in Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch cells operated at 4.5[V. Journal of Power Sources, 2015 , 300, 419-429	8.9	29

(2010-2015)

226	A systematic study of some promising electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite, Li[Ni0.5Mn0.3Co0.2]/graphite and Li[Ni0.6Mn0.2Co0.2]/graphite pouch cells. <i>Journal of Power Sources</i> , 2015 , 299, 130-138	8.9	29
225	A Search for Low-Irreversible Capacity and High-Reversible Capacity Positive Electrode Materials in the LiNiMnto Pseudoquaternary System. <i>Chemistry of Materials</i> , 2016 , 28, 55-66	9.6	28
224	The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2013 , 160, A383-A386	3.9	28
223	The Impact of Intentionally Added Water to the Electrolyte of Li-ion Cells. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2281-A2287	3.9	28
222	Relative Impact of Al or Mg Substitution on the Thermal Stability of LiCo[sub 1월]M[sub z]O[sub 2] (M=Al or Mg) by Accelerating Rate Calorimetry. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A917	3.9	28
221	Phases Formed in Al-Doped Ni[sub 1/3]Mn[sub 1/3]Co[sub 1/3](OH)[sub 2] Prepared by Coprecipitation: Formation of Layered Double Hydroxide. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A642	3.9	28
220	Mechanical and electrical properties of poly(vinylidene fluorideDetrafluoroethyleneBropylene)/Super-S carbon black swelled in liquid solvent as an electrode binder for lithium-ion batteries. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 2958-2965	2.9	28
219	Electrochemical Reaction of the SiAg Binary System with Li. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1445	3.9	28
218	Nanocomposites in the SnMnII system produced by mechanical alloying. <i>Journal of Alloys and Compounds</i> , 2000 , 297, 122-128	5.7	28
217	Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of LixNiO2Iwith the Electrolyte of Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2826-A2833	3.9	27
216	An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn[sub 30]Co[sub 30]C[sub 40]. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A326	3.9	27
215	Templated Ru/Se/C electrocatalysts for oxygen reduction. <i>Electrochimica Acta</i> , 2009 , 54, 1350-1354	6.7	27
214	Production and visualization of quaternary combinatorial thin films. <i>Measurement Science and Technology</i> , 2006 , 17, 1399-1404	2	27
213	Measuring thickness changes in thin films due to chemical reaction by monitoring the surface roughness with in situ atomic force microscopy. <i>Microscopy and Microanalysis</i> , 2002 , 8, 422-8	0.5	27
212	Measuring Oxygen Release from Delithiated LiNixMnyCo1-x-yO2and Its Effects on the Performance of High Voltage Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3025-A3037	3.9	26
211	How Phase Transformations during Cooling Affect Li-Mn-Ni-O Positive Electrodes in Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1134-A1138	3.9	26
210	A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. <i>Carbon</i> , 2012 , 50, 3717-3723	10.4	26
209	Impact of Al or Mg substitution on the Thermal Stability of Li[sub 1.05]Mn[sub 1.95团]M[sub z]O[sub 4] (M=Al or Mg). <i>Journal of the Electrochemical Society</i> , 2010 , 157, A798	3.9	26

208	Dissolution of Ni from High Ni Content Pt1 Nix Alloys. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B905	3.9	26
207	A Combinatorial Study of the Sn-Si-C System for Li-Ion Battery Applications. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A711-A719	3.9	26
206	A MBsbauer effect and X-ray diffraction investigation of TiBn intermetallic compounds: I. Equilibrium phases. <i>Journal of Alloys and Compounds</i> , 2003 , 353, 60-64	5.7	26
205	Effects of Fluorinated Carbonate Solvent Blends on High Voltage Parasitic Reactions in Lithium Ion Cells Using OCV Isothermal Microcalorimetry. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2131-	A2738	26
204	Impact of a Titanium-Based Surface Coating Applied to Li[Ni0.5Mn0.3Co0.2]O2 on Lithium-Ion Cell Performance. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7052-7064	6.1	26
203	A New Method for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells, Using Fourier Transform Infrared Spectroscopy and Machine Learning. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A256-A262	3.9	25
202	Some Physical Properties of Ethylene Carbonate-Free Electrolytes. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A126-A131	3.9	25
201	A study of highly conductive ester co-solvents in Li[Ni0.5Mn0.3Co0.2]O2/Graphite pouch cells. <i>Electrochimica Acta</i> , 2018 , 270, 215-223	6.7	25
200	Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells. <i>Journal of Power Sources</i> , 2016 , 329, 387-397	8.9	25
199	Study of the Consumption of Vinylene Carbonate in Li[Ni0.33Mn0.33Co0.33]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1618-A1624	3.9	25
198	Synthesis, Characterization, and Thermal Stability of LiCo[sub 1团][MnMg][sub z/2]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A993	3.9	25
197	Insignificant impact of designed oxygen release from high capacity $\text{Li}[(\text{Ni1/2Mn1/2})\text{xCoy}(\text{Li1/3Mn2/3})\text{1/3}]\text{O2} (x + y = 2/3) positive electrodes during the cycling of Li-ion cells. Electrochimica Acta, 2006, 51, 3413-3416$	6.7	25
196	The amorphous range in sputtered SiAlBn films. Thin Solid Films, 2003, 443, 144-150	2.2	25
195	Electrochemical and thermal studies of Li[NixLi($1/3$ \mathbb{Z} x/ 3)Mn($2/3$ \mathbb{Z} / 3)]O2 (x=1/12, 1/4, 5/12, and 1/2). <i>Electrochimica Acta</i> , 2005 , 50, 4778-4783	6.7	25
194	Preparation and characterization of sputtered Fe1⊠Nx films. <i>Thin Solid Films</i> , 2005 , 493, 60-66	2.2	25
193	The Effect of Different Li(Ni1-x-yMnxCoy)O2Positive Electrode Materials and Coatings on Parasitic Heat Flow as Measured by Isothermal Microcalorimetry, Ultra-High Precision Coulometry and Long Term Cycling. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1203-A1212	3.9	24
192	The spinel and cubic rocksalt solid-solutions in the LiMnNi oxide pseudo-ternary system. <i>Solid State Ionics</i> , 2013 , 242, 1-9	3.3	24
191	A High Precision Study of Electrolyte Additive Combinations Containing Vinylene Carbonate, Ethylene Sulfate, Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite in Li[Ni1/3Mn1/3Co1/3]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1890	3.9 - A189 7	24 7

(2016-2010)

190	RDE Measurements of ORR Activity of Pt[sub 1 \mathbb{N}]Ir[sub x] (0. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B207	3.9	24	
189	The Effect of Al Substitution on the Reactivity of Delithiated LiNi[sub (0.5回)]Mn[sub (0.5回)]A1[sub 2z]O[sub 2] with Nonaqueous Electrolyte. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, A155		24	
188	Acid Stability and Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1図]Ta[sub x] (0図1) Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A2304	3.9	24	
187	Ester-Based Electrolytes for Fast Charging of Energy Dense Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 12269-12280	3.8	23	
186	Methyl Acetate as a Co-Solvent in NMC532/Graphite Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1027-A1037	3.9	23	
185	A Study of Li-Ion Cells Operated to 4.5 V and at 55LC. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2399-A2406	3.9	23	
184	A Study of Three Ester Co-Solvents in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3556-A3562	3.9	23	
183	Activation Energies of Crystallization Events in Electrochemically Lithiated Silicon. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1207	3.9	23	
182	Studies of the Effect of Triphenyl Phosphate on Positive Electrode Symmetric Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1467-A1473	3.9	23	
181	Investigation of copper oxide impregnants prepared from various precursors for respirator carbons. <i>Journal of Colloid and Interface Science</i> , 2010 , 341, 162-70	9.3	23	
180	The Impact of the Addition of Rare Earth Elements to Si[sub 1☑]Sn[sub x] Negative Electrode Materials for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1211	3.9	23	
179	A Critical Evaluation of the Advanced Electrolyte Model. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3350-A3359	3.9	23	
178	Fibrinogen and albumin adsorption on titanium nanoroughness gradients. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 91, 90-6	6	22	
177	Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2. <i>Water Research</i> , 2011 , 45, 6173-80	12.5	22	
176	Comparison of Mechanically Milled and Sputter Deposited Tintobalttarbon Alloys Using Small Angle Neutron Scattering. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A1034	3.9	22	
175	Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A975	3.9	22	
174	Entropy of intercalation compounds. II. Calorimetry of electrochemical cells of the Chevrel compound LixMo6Se8for 0?x?4. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 5135-5148		22	
173	Surface-Electrolyte Interphase Formation in Lithium-Ion Cells Containing Pyridine Adduct Additives. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A773-A780	3.9	21	

172	Synergistic Effect of LiPF6 and LiBF4 as Electrolyte Salts in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2426-A2433	3.9	21
171	SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness. <i>Applied Surface Science</i> , 2007 , 253, 3201-3207	6.7	21
170	The effect of boron doping into Co-C-N and Fe-C-N electrocatalysts on the oxygen reduction reaction. <i>Electrochimica Acta</i> , 2008 , 53, 2423-2429	6.7	21
169	A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry. <i>Surface Science</i> , 2008 , 602, 2927-29	93 ¹ 5 ⁸	21
168	Effect of Substituting LiBF4for LiPF6in High Voltage Lithium-Ion Cells Containing Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1686-A1692	3.9	20
167	Combinatorial synthesis of mixed transition metal oxides for lithium-ion batteries. <i>ACS Combinatorial Science</i> , 2011 , 13, 186-9	3.9	20
166	(Sn[sub 0.5]Co[sub 0.5])[sub 1囚]C[sub y] Alloy Negative Electrode Materials Prepared by Mechanical Attriting. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A204	3.9	20
165	Study of Sn[sub 30](Co[sub 1½]Fe[sub x])[sub 30]C[sub 40] Alloy Negative Electrode Materials Prepared by Mechanical Attriting. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A13	3.9	20
164	The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications. <i>Journal of Hazardous Materials</i> , 2010 , 180, 419-28	12.8	20
163	Exclusion of Salt Solutions from Activated Carbon Pores and the Relationship to Contact Angle on Graphite. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3680-3684	3.8	20
162	Comparison of the Reaction of Li[sub x]Si or Li[sub 0.81]C[sub 6] with 1 M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A340		20
161	A Comparison of the Performance of Different Morphologies of LiNi0.8Mn0.1Co0.1O2 Using Isothermal Microcalorimetry, Ultra-High Precision Coulometry, and Long-Term Cycling. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 060530	3.9	20
160	Binary Additive Blends Including Pyridine Boron Trifluoride for Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1693-A1701	3.9	19
159	The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3445-A3453	3.9	19
158	A comparison of sputtered and mechanically milled Cu6Sn5\(\mathbb{L}\)C materials for Li-ion battery negative electrodes. <i>Journal of Power Sources</i> , 2012 , 216, 139-144	8.9	19
157	Combinatorial Study of the Sntut System for Li-Ion Battery Negative Electrode Materials. Journal of the Electrochemical Society, 2010 , 157, A1085	3.9	19
156	Alternative Catalyst Supports Deposited on Nanostructured Thin Films for Proton Exchange Membrane Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B187	3.9	19
155	Understanding the role of each ingredient in a basic copper carbonate based impregnation recipe for respirator carbons. <i>Journal of Colloid and Interface Science</i> , 2009 , 337, 313-21	9.3	19

154	Importance of nanostructure for high capacity negative electrode materials for Li-ion batteries. <i>Electrochemistry Communications</i> , 2010 , 12, 1041-1044	5.1	19	
153	Electrochemical and In Situ XRD Studies of the Li Reaction with Combinatorially Sputtered Mo[sub 1월]Sn[sub x] (0 년 년0.50) Thin Films. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A470	3.9	19	
152	Structure, Electrochemical Properties, and Thermal Stability Studies of Li[Ni[sub 0.2]Co[sub 0.6]Mn[sub 0.2]]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1874	3.9	19	
151	A Comparative Study of Pyridine-Boron Trifluoride, Pyrazine-(BF3)2and Triazine-(BF3)3as Electrolyte Additives for Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2066-A20)7 ² 4 ⁹	18	
150	Ultra High Precision Study on High Capacity Cells for Large Scale Automotive Application. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2306-A2310	3.9	18	
149	Solid-State Synthesis as a Method for the Substitution of Al for Co in LiNi[sub 1B]Mn[sub 1B]Co[sub (1B团)]Al[sub z]O[sub 2]. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A796	3.9	18	
148	Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3000-A3013	3.9	18	
147	High-Precision Coulometry Studies of the Impact of Temperature and Time on SEI Formation in Li-lon Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1529-A1536	3.9	18	
146	Effects of Surface Coating on Gas Evolution and Impedance Growth at Li[NixMnyCo1-x-y]O2Positive Electrodes in Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3174-A3181	3.9	17	
145	In Situ XRD Studies During Synthesis of Single-Crystal LiNiO2, LiNi0.975Mg0.025O2, and LiNi0.95Al0.05O2 Cathode Materials. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 100501	3.9	17	
144	The effect of electrolyte additives on both LaPO4-coated Li(Ni0.4Mn0.4Co0.2)O2 and uncoated Li(Ni0.4Mn0.4Co0.2)O2 in Li-ion pouch cells. <i>Journal of Power Sources</i> , 2016 , 306, 516-525	8.9	17	
143	Effects of Electrode Density on the Safety of NCA Positive Electrode for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1108-A1111	3.9	17	
142	Materials preparation by ball milling. Canadian Journal of Physics, 2000, 78, 211-229	1.1	17	
141	Measuring the Parasitic Heat Flow of Lithium Ion Pouch Cells Containing EC-Free Electrolytes. Journal of the Electrochemical Society, 2017 , 164, A567-A573	3.9	16	
140	Improving Linear Alkyl Carbonate Electrolytes with Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1239-A1250	3.9	16	
139	Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1611-A1622	3.9	16	
138	Explicit Conversion between Different Equivalent Circuit Models for Electrochemical Impedance Analysis of Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A228-A234	3.9	16	
137	Using the Charge-Discharge Cycling of Positive Electrode Symmetric Cells to Find Electrolyte/Electrode Combinations with Minimum Reactivity. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3349-A3356	3.9	16	

136	The Reactivity of Charged Electrode Materials with Electrolytes Containing the Flame Retardant, Triphenyl Phosphate. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1834-A1837	3.9	16
135	Comparison of Thermal Stability Between Lithiated Sn[sub 30]Co[sub 30]C[sub 40], LiSi, or Li[sub 0.81]C[sub 6] and 1 M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A921	3.9	16
134	The Effect of Lithium Content and Core to Shell Ratio on Structure and Electrochemical Performance of Core-Shell Li(1+x)[Ni0.6Mn0.4](1½)O2Li(1+y)[Ni0.2Mn0.8](1½)O2Positive Electrode Materials. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A269-A277	3.9	15
133	An In Situ Study of the Electrochemical Reaction of Li with Amorphous Nanostructured Cu6Sn5 + C. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1328	3.9	15
132	Gas adsorption properties of the ternary ZnO/CuO/CuCl(2) impregnated activated carbon system for multigas respirator applications assessed through combinatorial methods and dynamic adsorption studies. <i>ACS Combinatorial Science</i> , 2011 , 13, 639-45	3.9	15
131	MBsbauer effect and X-ray diffraction investigation of SiBe thin films. <i>Philosophical Magazine</i> , 2006 , 86, 5017-5030	1.6	15
130	Electrochemical and Thermal Comparisons of Li[Ni[sub 0.1]Co[sub 0.8]Mn[sub 0.1]]O[sub 2] Synthesized at Different Temperatures (900, 1000, and 1100°C). <i>Journal of the Electrochemical Society</i> , 2005 , 152, A19	3.9	15
129	Study of the consumption of the additive prop-1-ene-1,3-sultone in Li[Ni0.33Mn0.33Co0.33]O2/graphite pouch cells and evidence of positive-negative electrode interaction. <i>Journal of Power Sources</i> , 2016 , 313, 152-163	8.9	14
128	1,2,6-Oxadithiane 2,2,6,6-tetraoxide as an Advanced Electrolyte Additive for Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2665-A	\ 2 872	14
127	Positive Electrode Materials in the Li-Mn-Ni-O System Exhibiting Anomalous Capacity Growth during Extended Cycling. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A308-A317	3.9	14
126	ARC Studies of the Effects of Electrolyte Additives on the Reactivity of Delithiated Li1-x[Ni1/3Mn1/3Co1/3]O2and Li1-x[Ni0.8Co0.15Al0.05]O2Positive Electrode Materials with Electrolyte. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1394-A1398	3.9	14
125	A Systematic Study of the Concentration of Lithium Hexafluorophosphate (LiPF6) as a Salt for LiCoO2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1278-A1283	3.9	14
124	The effect of heating temperature and nitric acid treatments on the performance of Cu- and Zn-based broad spectrum respirator carbons. <i>Journal of Colloid and Interface Science</i> , 2011 , 364, 178-94	9.3	14
123	Studies of LiNi[sub 2/3]Mn[sub 1/3]O[sub 2]: A Positive Electrode Material That Cycles Well to 4.6 V. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A399	3.9	14
122	Effect of Annealing on Sn[sub 30]Co[sub 30]C[sub 40] Prepared by Mechanical Attriting. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, A187		14
121	Thermogravimetric analysis to determine the lithium to manganese atomic ratio in Li1+xMn2⊠O4. <i>Applied Physics Letters</i> , 1995 , 66, 2487-2489	3.4	14
120	High Precision Coulometry Studies of Single-Phase Layered Compositions in the Li-Mn-Ni-O System. Journal of the Electrochemical Society, 2014 , 161, A1189-A1193	3.9	13
119	An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer. <i>Review of Scientific Instruments</i> , 2017 , 88, 095101	1.7	13

118	The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes. <i>Electrochimica Acta</i> , 2015 , 174, 417	7-423	13	
117	FeINII Oxygen-Reduction Catalysts Supported on Burned-OffIActivated Carbon. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B493	3.9	13	
116	Effect of annealing on nanostructured Sn30Co30C40 prepared by mechanical attrition. <i>Journal of Alloys and Compounds</i> , 2009 , 472, 390-394	5.7	13	
115	Structure and properties of sequentially sputtered molybdenum E in films. <i>Thin Solid Films</i> , 2002 , 408, 111-122	2.2	13	
114	A combinatorial sputtering method to prepare a wide range of A/B artificial superlattice structures on a single substrate. <i>Journal of Magnetism and Magnetic Materials</i> , 2003 , 261, 399-409	2.8	13	
113	Photoelectron spectroscopy studies of Li1+xMn2\(\mathbb{U}\)O4 for Li ion battery applications. <i>Journal of Applied Physics</i> , 1996 , 80, 4141-4152	2.5	13	
112	Isothermal microcalorimetry as a tool to study solid-electrolyte interphase formation in lithium-ion cells. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 11383-90	3.6	13	
111	Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells. <i>Journal of Power Sources</i> , 2016 , 328, 433-442	8.9	12	
110	SO2 and NH3 gas adsorption on a ternary ZnO/CuO/CuCl2 impregnated activated carbon evaluated using combinatorial methods. <i>ACS Combinatorial Science</i> , 2012 , 14, 31-7	3.9	12	
109	Advantages of Simultaneous Substitution of Co in Li[Ni[sub 1B]Mn[sub 1B]Co[sub 1B]]O[sub 2] by Ni and Al. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A81		12	
108	A new simple tubular flow cell for use with variable angle spectroscopic ellipsometry: A high throughput in situ protein adsorption study. <i>Surface Science</i> , 2009 , 603, 2888-2895	1.8	12	
107	An in situ study of protein adsorption on combinatorial Cu-Al films using spectroscopic ellipsometry. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 81, 58-66	6	12	
106	Study of the mechanical and electrical properties of carbon/poly(vinylidene fluorideBetrafluoroethyleneDropylene) films crosslinked with triethylenetetramine: Possible application as binder for lithium-ion battery electrodes. <i>Journal of Applied Polymer Science</i> , 2004 ,	2.9	12	
105	91, 2949-2957 Combinatorial synthesis and rapid characterization of Mo1\(\mathbb{\text{B}}\)Snx (0?x?1) thin films. <i>Thin Solid Films</i> , 2003 , 440, 11-18	2.2	12	
104	A MBsbauer effect and X-ray diffraction investigation of TiBn intermetallic compounds:. <i>Journal of Alloys and Compounds</i> , 2003 , 353, 65-73	5.7	12	
103	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part I. Two-Step Lithiation Method for Al- or Mg-Doped LiNiO2. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 040531	3.9	12	
102	Effect of Choices of Positive Electrode Material, Electrolyte, Upper Cut-Off Voltage and Testing Temperature on the Life Time of Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3	31 3 9-A	32 1 24	
101	Dioxazolone and Nitrile Sulfite Electrolyte Additives for Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2961-A2967	3.9	12	

100	Investigating the Removal of Layered Double Hydroxides in [Ni0.80Co0.15]0.95-xAl0.05+x(OH)2(x = 0, 0.05) Prepared by Coprecipitation. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2781-A2791	3.9	12
99	A Systematic Study of Electrolyte Additives in Single Crystal and Bimodal LiNi0.8Mn0.1 Co0.1O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 090503	3.9	12
98	A Tale of Two Additives: Effects of Glutaric and Citraconic Anhydrides on Lithium-Ion Cell Performance. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A793-A801	3.9	11
97	Nanostructured Sn30Co30C40 alloys for lithium-ion battery negative electrodes prepared by horizontal roller milling. <i>Journal of Alloys and Compounds</i> , 2014 , 595, 138-141	5.7	11
96	Analysis of the cubic spinel region of the LillolMn oxide pseudo-ternary system. <i>Solid State Ionics</i> , 2013 , 253, 234-238	3.3	11
95	Quantifying protein adsorption on combinatorially sputtered Al-, Nb-, Ta- and Ti-containing films with electron microprobe and spectroscopic ellipsometry. <i>Surface Science</i> , 2009 , 603, 992-1001	1.8	11
94	In Situ Study of Electrolyte Reactions in Secondary Lithium Cells. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 516-519	3.9	11
93	Some Effects of Intentionally Added Water on LiCoO2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1678-A1685	3.9	11
92	A Comparison of NMC/Graphite Pouch Cells and Commercially Available LiCoO2/Graphite Pouch Cells Tested to High Potential. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A456-A462	3.9	11
91	A comparative study on the reactivity of charged Ni-rich and Ni-poor positive electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. <i>Journal of Energy Chemistry</i> , 2021 , 60, 523-530	12	11
90	A Low-Cost Instrument for Dry Particle Fusion Coating of Advanced Electrode Material Particles at the Laboratory Scale. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 110509	3.9	10
89	The Effect of Methyl Acetate, Ethylene Sulfate, and Carbonate Blends on the Parasitic Heat Flow of NMC532/Graphite Lithium Ion Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A867-A875	3.9	10
88	The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells. <i>Journal of Power Sources</i> , 2016 , 330, 175-185	8.9	10
87	The Effect of Interdiffusion on the Properties of Lithium-Rich Core-Shell Cathodes. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2841-A2848	3.9	10
86	Structure and Performance of Tin-Cobalt-Carbon Alloys Prepared by Attriting, Roller Milling and Sputtering. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A342-A347	3.9	10
85	A study of small angle X-ray scattering from impregnated activated carbons. <i>Carbon</i> , 2014 , 68, 452-461	10.4	10
84	The effect of co-impregnated acids on the performance of Zn-based broad spectrum respirator carbons. <i>Journal of Hazardous Materials</i> , 2012 , 235-236, 279-85	12.8	10
83	Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods. ACS Combinatorial Science, 2013, 15, 101-10	3.9	10

(2011-2019)

82	Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3250-A3253	3.9	9
81	Effects of Graphite Heat-Treatment Temperature on Single-Crystal Li[Ni5Mn3Co2]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 080543	3.9	9
80	Dramatic Effects of Low Salt Concentrations on Li-Ion Cells Containing EC-Free Electrolytes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2089-A2100	3.9	9
79	Highly porous MnOx prepared from Mn(C2O4)[BH2O as an adsorbent for the removal of SO2 and NH3. <i>Microporous and Mesoporous Materials</i> , 2017 , 244, 192-198	5.3	9
78	Performance and Degradation of LiFePO4/Graphite Cells: The Impact of Water Contamination and an Evaluation of Common Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 13054	ı 3 .9	9
77	A Joint DFT and Experimental Study of an Imidazolidinone Additive in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3707-A3715	3.9	9
76	Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells: Vinylene Carbonate and Ethylene Sulfate. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 010514	3.9	9
75	The Formation of Layered Double Hydroxide Phases in the Coprecipitation Syntheses of [Ni0.80Co0.15]($1 \ \square$)/0.95Alx(OH)2(anionn]k/n (x = $0 \ \square$.2, n = 1, 2). ChemEngineering, 2019 , 3, 38	2.6	8
74	Novel nanoporous MnOx (x=~1.75) sorbent for the removal of SO2 and NH3 made from MnC2O4I2H2O. <i>Journal of Colloid and Interface Science</i> , 2016 , 465, 323-32	9.3	8
73	Electrolyte Development for High-Performance Li-Ion Cells: Additives, Solvents, and Agreement with a Generalized Molecular Model. <i>Electrochemical Society Interface</i> , 2019 , 28, 49-53	3.6	8
72	19F and 31P Solid-State NMR Characterization of a Pyridine Pentafluorophosphate-Derived Solid-Electrolyte Interphase. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2171-A2175	3.9	8
71	Lithium Intercalation from Aqueous Solutions. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 369, 69		8
70	Dependence of the Intercalation of Li in WO 3 on the Preparation of the WO 3 Host. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 2406-2409	3.9	8
69	Cobalt-Free Core-Shell Structure with High Specific Capacity and Long Cycle Life as an Alternative to Li[Ni0.8Mn0.1Co0.1]O2. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 120533	3.9	8
68	Effects of Fluorine Doping on Nickel-Rich Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020 , 167, 080518	3.9	7
67	The electrochemical reaction of lithium with high-capacity dense sputtered carbon. <i>Carbon</i> , 2014 , 74, 249-254	10.4	7
66	Studies of CoSn grains in the carbon matrix structure of nanostructured tintlobalttlarbon. <i>Journal of Alloys and Compounds</i> , 2012 , 541, 168-172	5.7	7
65	Can Zr be Substituted for Co in Co[sub 1년]Zr[sub z](OH)[sub 2] and LiCo[sub 1년]Zr[sub z]O[sub 2]?. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A110	3.9	7

64	A New Design for a Combinatorial Electrochemical Cell Plate and the Inherent Irreversible Capacity of Lithiated Silicon. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, A42		7
63	A combinatorial approach to screening carbon based materials for respiratory protection. <i>Journal of Hazardous Materials</i> , 2010 , 183, 677-87	12.8	7
62	A high throughput method using electron microprobe analysis for quantification of protein adsorption on surfaces. <i>Surface Science</i> , 2008 , 602, 795-804	1.8	7
61	Two distinct Langmuir isotherms describe the adsorption of certain salts onto activated carbon over a wide concentration range. <i>Carbon</i> , 2006 , 44, 3145-3148	10.4	7
60	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part II. One-Step Lithiation Method of Mg-Doped LiNiO2. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 050506	3.9	7
59	Determining Parasitic Reaction Enthalpies in Lithium-Ion Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2018 , 165, A3449-A3458	3.9	7
58	Ultrafast Inside-Out NMR Assessment of Rechargeable Cells. <i>Batteries and Supercaps</i> , 2021 , 4, 322-326	5.6	7
57	Studies of Si-Fe-C Electrode Materials Prepared by Combinatorial Sputter Deposition. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A498-A507	3.9	6
56	Role of CuO in improving NH and SO capture on nanoporous FeO sorbents. <i>Journal of Colloid and Interface Science</i> , 2018 , 521, 206-215	9.3	6
55	Room temperature crystallization kinetics of amorphous Cu6Sn5+C alloys. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 6705-6710	5.7	6
54	Assessing the Pt[sub upd] Surface Area Stability of Pt[sub 1½]M[sub x] (M=Re, Nb, Bi) Solid Solutions for Proton Exchange Membrane Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B737	3.9	6
53	A MBsbauer effect study of combinatorially prepared Al2O3/Fe and LiF/Fe multilayers. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 055203	1.8	6
52	Natural variability in the surface roughness of combinatorial libraries of materials. <i>Applied Surface Science</i> , 2007 , 253, 5943-5946	6.7	6
51	Thermal runaway prediction for impregnated activated carbons from isothermal DSC measurements. <i>Carbon</i> , 2003 , 41, 903-913	10.4	6
50	Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/Artificial Graphite Cells after Formation and after Cycling. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 120507	3.9	6
49	Scanning Micro X-ray Fluorescence (XRF) as an Effective Tool in Quantifying Fe Dissolution in LiFePO4 Cells: Towards a Mechanistic Understanding of Fe Dissolution. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 130539	3.9	6
48	Factors that Affect Capacity in the Low Voltage Kinetic Hindrance Region of Ni-Rich Positive Electrode Materials and Diffusion Measurements from a Reinvented Approach. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 070503	3.9	6
47	Mechanism of Action of the Tungsten Dopant in LiNiO 2 Positive Electrode Materials. <i>Advanced Energy Materials</i> , 2022 , 12, 2103067	21.8	6

46	Succinic Anhydride as an Enabler in Ethylene Carbonate-Free Linear Alkyl Carbonate Electrolytes for High Voltage Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A1268-A1273	3.9	5
45	Impact of Aluminum Added to Ni-Based Positive Electrode Materials by Dry Particle Fusion. <i>Chemistry of Materials</i> , 2020 , 32, 6097-6104	9.6	5
44	A Comparative Study of Pyridine Containing Lewis Acid-Base Adducts as Additives for Li[Ni0.5Mn0.3Co0.2]O2/graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2124-A	√2130	5
43	Screening Bifunctional Pt Based NSTF Catalysts for Durability with the Rotating Disk Electrode: The Effect of Ir and Ru. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F854-F862	3.9	5
42	Small and wide angle X-ray studies of impregnated activated carbons. <i>Carbon</i> , 2014 , 75, 420-431	10.4	5
41	Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 92, 521-32	5.4	5
40	Sn-based roughness gradients for high-throughput screening. <i>Thin Solid Films</i> , 2008 , 516, 7361-7365	2.2	5
39	Study of Electrolyte and Electrode Composition Changes vs Time in Aged Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 020532	3.9	5
38	Impact of Shell Composition, Thickness and Heating Temperature on the Performance of Nickel-Rich Cobalt-Free Core-Shell Materials. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 160556	3.9	5
37	The Effect of Ru or Ir Addition on Nano-Structured-Thin-Film Supported Pt Fuel Cell Catalysts under Rotating Disk Electrode Simulated Start-up Shut-down. <i>Journal of the Electrochemical Society</i> , 2014 , 161, F961-F968	3.9	4
36	Impact of Electrolyte Additive Content on the Lifetime of LiNi0.5Mn0.3Co0.2O2/Artificial and Natural Graphite Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2756-A2766	3.9	4
35	Accelerated Failure in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells Due to Low LiPF6 Concentration and Extended Time at High Voltage. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 130541	3.9	4
34	Tungsten Infused Grain Boundaries Enabling Universal Performance Enhancement of Co-Free Ni-Rich Cathode Materials. <i>Journal of the Electrochemical Society</i> ,	3.9	4
33	Different Positive Electrodes for Anode-Free Lithium Metal Cells. <i>Journal of the Electrochemical Society</i> ,	3.9	4
32	Impact of Functionalization and Co-Additives on Dioxazolone Electrolyte Additives. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 080540	3.9	3
31	Simulations of isothermal oven tests of impregnated activated carbons in cylindrical and cubic sample holders. <i>Carbon</i> , 2004 , 42, 2385-2392	10.4	3
30	Impact of moisture on the thermal behavior of K2CO3-impregnated respirator carbons. <i>Carbon</i> , 2003 , 41, 1695-1705	10.4	3
29	Correlating the mechanical strength of positive electrode material particles to their capacity retention. <i>Cell Reports Physical Science</i> , 2022 , 3, 100714	6.1	3

28	Impact of Al Doping and Surface Coating on the Electrochemical Performances of Li-Rich Mn-Rich Li1.11Ni0.33Mn0.56O2 Positive Electrode Material. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 120531	3.9	3
27	Impact of Cr Doping on the Voltage Fade of Li-Rich Mn-Rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 Positive Electrode Materials. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 1605-	43 ⁹	3
26	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021 , 168, 060527	3.9	3
25	Correlating Cation Mixing with Li Kinetics: Electrochemical and Li Diffusion Measurements on Li-Deficient LiNiO2 and Li-Excess LiNi0.5Mn0.5O2. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 090	<i>3</i> 335	3
24	Preventing Interdiffusion during Synthesis of Ni-Rich CoreBhell Cathode Materials. <i>ACS Energy Letters</i> ,2189-2195	20.1	3
23	Synthesis and Evaluation of Difluorophosphate Salt Electrolyte Additives for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020 , 167, 100538	3.9	2
22	A Study of Vinylene Carbonate and Prop-1-ene-1,3 Sultone Electrolyte Additives Using Polycrystalline Li[Ni0.6Mn0.2Co0.2]O2 in Positive/Positive Symmetric Cells. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 110527	3.9	2
21	Application of the Bonfusion principleIto Sn-based materials as negative electrode materials for Li-ion batteries. <i>Canadian Journal of Physics</i> , 2010 , 88, 131-135	1.1	2
20	Time to move beyond transition metal IN IC catalysts for oxygen reduction 2010,		2
19	Use of carbon black to eliminate surface charging effects in photoelectron spectroscopy measurements of powders. <i>Applied Physics Letters</i> , 1997 , 71, 2262-2264	3.4	2
18	Thermal Stability of Lithium Ion Battery Electrode Materials in Organic Electrolytes. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 496, 445		2
17	Effect of Duty Cycle on the Lifetime of Single Crystal LiNi0.5Mn0.3Co0.2O2/Graphite Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 130529	3.9	2
16	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. <i>Journal of the Electrochemical Society</i> ,	3.9	2
15	MnO2/Fe2O3 Nanocomposite Sorbent for Gas Capture. ACS Applied Nano Materials, 2018, 1, 6674-6682	5.6	2
14	An Evaluation of a Systematic Series of Cobalt-Free Ni-Rich Core-Shell Materials as Positive Electrode Materials for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 090555	3.9	2
13	User-Friendly Freeware for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells Using Fourier Transform Infrared Spectroscopy, Beer's Law, and Machine Learning. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3102-A3108	3.9	1
12	Adding structural diversity to roughness gradients formed from Sn. <i>Thin Solid Films</i> , 2008 , 516, 8537-854	4 2 2	1
11	A Baseline Kinetic Study of Co-Free Layered Li1+x(Ni0.5Mn0.5)1⊠O2 Positive Electrode Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 110502	3.9	1

LIST OF PUBLICATIONS

10	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part I. Material Properties, ARC Safety Tests, Gas Generation, and Room Temperature Cycling. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 110543	3.9	1	
9	A one-pot method for the synthesis of 3-(hetero-)aryl-1,4,2-dioxazol-5-ones. <i>Canadian Journal of Chemistry</i> , 2020 , 98, 158-163	0.9	1	
8	Using Lithium-ion Differential Thermal Analysis to Probe Tortuosity of Negative Electrodes in Lithium-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 020501	3.9	1	
7	Voltage-Dependent Li Kinetics Leads to Charge-Discharge Asymmetry in Co-Free Li-Rich Li1.12Ni0.44Mn0.44O2 under Conditions without Transition Metal Migration. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 090564	3.9	1	
6	In Situ Imaging of Electrode Thickness Growth and Electrolyte Depletion in Single-Crystal vs Polycrystalline LiNixMnyCozO2/Graphite Pouch Cells using Multi-Scale Computed Tomography. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 020501	3.9	О	
5	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part II. Long-Term Cycling, Stack Pressure Growth, Isothermal Microcalorimetry, and Lifetime Projection. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 010501	3.9	О	
4	Designing Positive/Positive and Negative/Negative Symmetric Cells with Electrodes Operating in the Same Potential Ranges as Electrodes in a Full Li-Ion Cell. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 080537	3.9	O	
3	Measuring Parasitic Heat Flow in LiFePO4/Graphite Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 120526	3.9	О	
2	Increasing Stack Energy Density Without Lifetime Penalty by Increasing Electrode Loading in Single Crystal Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 100545	3.9		
1	KOH Based Method for the Determination of Oxygen Content in Ball Milled SiOx Material. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 010515	3.9		