
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995, 270, 590-593.	6.0	1,900
2	Electrochemical and In Situ Xâ€Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of the Electrochemical Society, 1992, 139, 2091-2097.	1.3	1,541
3	Electrochemical and In Situ Xâ€Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of the Electrochemical Society, 1997, 144, 2045-2052.	1.3	1,360
4	High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. Journal of the Electrochemical Society, 2000, 147, 1271.	1.3	1,353
5	Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of the Electrochemical Society, 1990, 137, 2009-2013.	1.3	1,255
6	The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of the Electrochemical Society, 2001, 148, A803.	1.3	1,115
7	Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters, 2001, 4, A137.	2.2	1,076
8	Synthesis and Electrochemistry of LiNi x Mn2 â^' x  O 4. Journal of the Electrochemical Society, 205-213.	1997, 144 1.3	^ļ , _{1,048}
9	In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. Journal of the Electrochemical Society, 2004, 151, A838.	1.3	968
10	Understanding the Anomalous Capacity of Li/Li[Ni[sub x]Li[sub (1/3â^'2x/3)]Mn[sub (2/3â^'x/3)]]O[sub 2] Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. Journal of the Electrochemical Society, 2002, 149, A815.	1.3	932
11	Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3â~'2x/3)]Mn[sub (2/3â~'x/3)]]O[sub 2] for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2001, 4, A191.	2.2	856
12	Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3â^'2x/3]Mn[sub 2/3â^'x/3]]O[sub 2]. Journal of the Electrochemical Society, 2002, 149, A778.	1.3	843
13	Phase diagram ofLixC6. Physical Review B, 1991, 44, 9170-9177.	1.1	815

14	An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. Journal of the Electrochemical Society, 2007, 154, A156.	1.3	762
15	Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon, 1996, 34, 193-200.	5.4	635
16	In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1225.	1.3	606
17	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603

18Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass.
Journal of the Electrochemical Society, 1997, 144, 2943-2948.1.3601

#	Article	IF	CITATIONS
19	Rechargeable LiNiO2 / Carbon Cells. Journal of the Electrochemical Society, 1991, 138, 2207-2211.	1.3	593
20	Sodium Carboxymethyl Cellulose. Electrochemical and Solid-State Letters, 2007, 10, A17.	2.2	555
21	Layered Li[Ni[sub x]Co[sub 1â^'2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2001, 4, A200.	2.2	532
22	Reaction of Li with Alloy Thin Films Studied by In Situ AFM. Journal of the Electrochemical Society, 2003, 150, A1457.	1.3	530
23	Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental. Journal of the Electrochemical Society, 1999, 146, 2068-2077.	1.3	473
24	Alloy Design for Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2007, 154, A849.	1.3	463
25	Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochimica Acta, 2004, 49, 1079-1090.	2.6	422
26	Study of the Failure Mechanisms of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1401-A1408.	1.3	410
27	Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells. Journal of the Electrochemical Society, 2001, 148, A755.	1.3	401
28	Mechanically Alloyed Snâ€Fe(â€C) Powders as Anode Materials for Liâ€Ion Batteries: I. The Sn2Fe â€â€‰â Journal of the Electrochemical Society, 1999, 146, 405-413.	€‰Cậ€‰ 1.3	o System.
29	A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources, 2002, 108, 8-14.	4.0	365
30	Structure and Electrochemistry of Li[Ni[sub x]Co[sub 1â^'2x]Mn[sub x]]O[sub 2] (0â‰ജâ‰⊈/2). Journal of the Electrochemical Society, 2002, 149, A1332.	1.3	353
31	On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of the Electrochemical Society, 1999, 146, 59-68.	1.3	320
32	Synthesis and Characterization of Li1 + x Mn2 â^' x  O 4 for Liâ€lon Battery Applicat Electrochemical Society, 1996, 143, 100-114.	ions. Journ	al of the
33	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
34	Lithium Insertion in High Capacity Carbonaceous Materials. Journal of the Electrochemical Society, 1995, 142, 2581-2590.	1.3	294
35	Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A196.	1.3	294
36	A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. Journal of the Electrochemical Society, 2019, 166, A3031-A3044.	1.3	286

#	Article	IF	CITATIONS
37	Comparison of Single Crystal and Polycrystalline LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ Positive Electrode Materials for High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A1534-A1544.	1.3	280
38	Lithium Insertion in Carbons Containing Nanodispersed Silicon. Journal of the Electrochemical Society, 1995, 142, 326-332.	1.3	274
39	An In Situ Small-Angle X-Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. Journal of the Electrochemical Society, 2000, 147, 4428.	1.3	269
40	Predicting and Extending the Lifetime of Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1451-A1456.	1.3	261
41	Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?. Journal of the Electrochemical Society, 2019, 166, A429-A439.	1.3	259
42	Ab initiocalculation of the lithium-tin voltage profile. Physical Review B, 1998, 58, 15583-15588.	1.1	254
43	Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon, 2005, 43, 179-188.	5.4	254
44	Ex Situ and In Situ Stability Studies of PEMFC Catalysts. Journal of the Electrochemical Society, 2005, 152, A2309.	1.3	251
45	Structure and electrochemistry of Li Mn Ni1â^'O2. Solid State Ionics, 1992, 57, 311-318.	1.3	250
46	ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 2004, 6, 39-43.	2.3	250
47	In-Situ Detection of Lithium Plating Using High Precision Coulometry. Journal of the Electrochemical Society, 2015, 162, A959-A964.	1.3	247
48	Interpreting High Precision Coulometry Results on Li-ion Cells. Journal of the Electrochemical Society, 2011, 158, A1136-A1142.	1.3	246
49	Staging Phase Transitions in Li[sub x]CoO[sub 2]. Journal of the Electrochemical Society, 2002, 149, A1604.	1.3	242
50	A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. Journal of the Electrochemical Society, 2011, 158, A51.	1.3	240
51	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li[sub 0.5]CoO[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1205.	1.3	234
52	A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A447.	1.3	228
53	Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0	<) Ti ETQq1 3.2	1 0.784314 206
54	Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons. Journal of the	1.3	205

Electrochemical Society, 1997, 144, 1195-1201.

205 1.3

#	Article	IF	CITATIONS
55	An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 7574-7583.	3.2	205
56	The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochemistry Communications, 2007, 9, 2534-2540.	2.3	202
57	The "falling cards model―for the structure of microporous carbons. Carbon, 1997, 35, 825-830.	5.4	201
58	Lithium Insertion in Hydrogen-Containing Carbonaceous Materials. Chemistry of Materials, 1996, 8, 389-393.	3.2	200
59	Synthesis of Single Crystal LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ with Enhanced Electrochemical Performance for Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1038-A1045.	1.3	199
60	Hysteresis during Lithium Insertion in Hydrogen ontaining Carbons. Journal of the Electrochemical Society, 1996, 143, 2137-2145.	1.3	198
61	Updating the Structure and Electrochemistry of Li _x NiO ₂ for 0 ≤ ≤. Journal of the Electrochemical Society, 2018, 165, A2985-A2993.	1.3	194
62	Mechanically Alloyed Snâ€Fe(â€C) Powders as Anode Materials for Liâ€Ion Batteries: III. Sn2Fe : SnFe3â€ Active/Inactive Composites. Journal of the Electrochemical Society, 1999, 146, 423-427.	‰Ç 1.3	190
63	Analysis of the Growth Mechanism of Coprecipitated Spherical and Dense Nickel, Manganese, and Cobalt-Containing Hydroxides in the Presence of Aqueous Ammonia. Chemistry of Materials, 2009, 21, 1500-1503.	3.2	190
64	Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2019, 166, A1291-A1299.	1.3	189
65	Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures. Journal of the Electrochemical Society, 1993, 140, 3396-3401.	1.3	188
66	Conductivity of electrolytes for rechargeable lithium batteries. Journal of Power Sources, 1991, 35, 59-82.	4.0	185
67	In Situ X-Ray Study of the Electrochemical Reaction of Li with ηʹ-Cu[sub 6]Sn[sub 5]. Journal of the Electrochemical Society, 2000, 147, 1658.	1.3	185
68	Lithiumâ€Ion Cells with Aqueous Electrolytes. Journal of the Electrochemical Society, 1995, 142, 1742-1746.	1.3	183
69	Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta, 2007, 52, 6346-6352.	2.6	183
70	NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes. Electrochemical and Solid-State Letters, 2012, 15, A1.	2.2	182
71	Lithium Intercalation from Aqueous Solutions. Journal of the Electrochemical Society, 1994, 141, 2310-2316.	1.3	181
72	Layered Liâ€Mnâ€Oxide with the O2 Structure: A Cathode Material for Liâ€Ion Cells Which Does Not Convert to Spinel. Journal of the Electrochemical Society, 1999, 146, 3560-3565.	1.3	179

#	Article	IF	CITATIONS
73	First Principles Model of Amorphous Silicon Lithiation. Journal of the Electrochemical Society, 2009, 156, A454.	1.3	177
74	Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends in Chemistry, 2020, 2, 354-366.	4.4	177
75	User-Friendly Differential Voltage Analysis Freeware for the Analysis of Degradation Mechanisms in Li-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A1405-A1409.	1.3	175
76	The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. Journal of the Electrochemical Society, 2003, 150, A149.	1.3	174
77	Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves. Journal of the Electrochemical Society, 1999, 146, 2078-2084.	1.3	173
78	Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochimica Acta, 2010, 55, 2991-2995.	2.6	172
79	Structure and Electrochemistry of Layered Li[Cr[sub x]Li[sub (1/3â^'x/3)]Mn[sub (2/3â^'2x/3)]]O[sub 2]. Journal of the Electrochemical Society, 2002, 149, A1454.	1.3	171
80	Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A278-A283.	1.3	171
81	Crystal structure ofLixNi2â^'xO2and a lattice-gas model for the order-disorder transition. Physical Review B, 1992, 46, 3236-3246.	1.1	168
82	The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Li x  (  B  z  C of the Electrochemical Society, 1994, 141, 907-912.	1â€% 1.3	‰â^' z â€ 168
83	First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations. Journal of Alloys and Compounds, 2010, 496, 25-36.	2.8	165
84	Economical Sputtering System To Produce Large-Size Composition-Spread Libraries Having Linear and Orthogonal Stoichiometry Variations. Chemistry of Materials, 2002, 14, 3519-3523.	3.2	162
85	Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins. Journal of the Electrochemical Society, 1995, 142, 3668-3677.	1.3	161
86	The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Electrodes. Journal of the Electrochemical Society, 2017, 164, A655-A665.	1.3	161
87	Mechanically Alloyed Snâ€Fe(â€C) Powders as Anode Materials for Liâ€Ion Batteries: II. The Snâ€Fe System. Journal of the Electrochemical Society, 1999, 146, 414-422.	1.3	159
88	The Reactions of Li[sub 0.5]CoO[sub 2] with Nonaqueous Solvents at Elevated Temperatures. Journal of the Electrochemical Society, 2002, 149, A912.	1.3	158
89	Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1996, 143, 3046-3052.	1.3	157
90	Combinatorial Study of Sn[sub 1â^'x]Co[sub x]â€,(0 <x<0.6) 0.45]][sub="" 0.55]co[sub="" 1â^'y]c[sub<br="" [sn[sub="" and="">y]â€,(0<y<0.5) alloy="" batteries.="" electrochemical<br="" electrode="" for="" journal="" li-ion="" materials="" negative="" of="" the="">Society, 2006, 153, A361.</y<0.5)></x<0.6)>	1.3	157

#	Article	IF	CITATIONS
91	Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium″on Batteries. Journal of the Electrochemical Society, 1997, 144, 2410-2416.	1.3	155
92	An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1548-A1554.	1.3	155
93	Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. Journal of Physical Chemistry C, 2015, 119, 22322-22330.	1.5	154
94	Ultrasonic Scanning to Observe Wetting and "Unwetting―in Li-Ion Pouch Cells. Joule, 2020, 4, 2017-2029.	11.7	152
95	Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature. Journal of the Electrochemical Society, 1999, 146, 3596-3602.	1.3	149
96	A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters. Journal of the Electrochemical Society, 2018, 165, A21-A30.	1.3	149
97	Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nature Energy, 2020, 5, 674-683.	19.8	149
98	A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries. Electrochemical and Solid-State Letters, 2010, 13, A177.	2.2	147
99	Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A59.	2.2	144
100	Synthesis of Single Crystal LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ for Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3529-A3537.	1.3	143
101	Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance. Joule, 2019, 3, 745-761.	11.7	141
102	Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons. Journal of the Electrochemical Society, 1996, 143, 3482-3491.	1.3	140
103	Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. International Journal of Energy Research, 2010, 34, 535-555.	2.2	140
104	The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2â^•Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A1194.	1.3	139
105	In Situ X-ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials. Chemistry of Materials, 2016, 28, 162-171.	3.2	139
106	Layered T2-, O6-, O2-, and P2-Type A2/3[Mâ€~2+1/3M4+2/3]O2Bronzes, A = Li, Na; Mâ€~ = Ni, Mg; M = Mn, Ti. Chemistry of Materials, 2000, 12, 2257-2267.	3.2	137
107	Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Journal of Power Sources, 1995, 54, 240-245.	4.0	134
108	Effect of Sulfate Electrolyte Additives on LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. Journal of Physical Chemistry C, 2014, 118, 29608-29622.	1.5	134

#	Article	IF	CITATIONS
109	Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells. Journal of the Electrochemical Society, 2013, 160, A117-A124.	1.3	132
110	Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures. Chemistry of Materials, 2000, 12, 3583-3590.	3.2	129
111	Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance. Journal of the Electrochemical Society, 2013, 160, A1668-A1674.	1.3	127
112	Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. Physical Review B, 1995, 51, 734-741.	1.1	126
113	Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49, 4599-4604.	2.6	125
114	Phase Diagram of Liâ^'Mnâ^'O Spinel in Air. Chemistry of Materials, 1999, 11, 3065-3079.	3.2	124
115	Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Physical Review B, 2006, 74, .	1.1	124
116	Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A521-A527.	1.3	124
117	Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A796-A802.	1.3	123
118	Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes. Journal of the Electrochemical Society, 2017, 164, A2689-A2696.	1.3	123
119	Highâ€Capacity Carbons Prepared from Phenolic Resin for Anodes of Lithiumâ€Ion Batteries. Journal of the Electrochemical Society, 1995, 142, L211-L214.	1.3	120
120	Studies of Aromatic Redox Shuttle Additives for LiFePO[sub 4]-Based Li-Ion Cells. Journal of the Electrochemical Society, 2005, 152, A2390.	1.3	118
121	Interactions between Positive and Negative Electrodes in Li-Ion Cells Operated at High Temperature and High Voltage. Journal of the Electrochemical Society, 2016, 163, A546-A551.	1.3	117
122	Synthesis of Single Crystal LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ Âwith a Two-Step Lithiation Method. Journal of the Electrochemical Society, 2019, 166, A1956-A1963.	1.3	117
123	In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry. Journal of the Electrochemical Society, 2013, 160, A588-A594.	1.3	116
124	Studies of the Capacity Fade Mechanisms of LiCoO ₂ /Si-Alloy: Graphite Cells. Journal of the Electrochemical Society, 2016, 163, A1146-A1156.	1.3	115
125	The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying. Journal of the Electrochemical Society, 2000, 147, 3237.	1.3	114
126	A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A5008-A5018.	1.3	114

#	Article	IF	CITATIONS
127	Structure-refinement program for disordered carbons. Journal of Applied Crystallography, 1993, 26, 827-836.	1.9	113
128	A small angle X-ray scattering study of carbons made from pyrolyzed sugar. Carbon, 1996, 34, 499-503.	5.4	112
129	Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano-structured thin film support. Electrochimica Acta, 2007, 53, 688-694.	2.6	112
130	A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Power Sources, 2016, 327, 145-150.	4.0	111
131	Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes. Journal of the Electrochemical Society, 2007, 154, A597.	1.3	110
132	A Systematic Study of Electrolyte Additives in Li[Ni _{1/3} Mn _{1/3} Co _{1/3}]O ₂ (NMC)/Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1818-A1827.	1.3	110
133	A Mössbauer effect investigation of the Li–Sn system. Journal of Alloys and Compounds, 1999, 289, 135-142.	2.8	109
134	Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of the Electrochemical Society, 2008, 155, A234.	1.3	108
135	New Chemical Insights into the Beneficial Role of Al ₂ O ₃ Cathode Coatings in Lithium-ion Cells. ACS Applied Materials & Interfaces, 2019, 11, 14095-14100.	4.0	108
136	Model of micropore closure in hard carbon prepared from sucrose. Carbon, 1999, 37, 1399-1407.	5.4	106
137	Phenothiazine Molecules. Journal of the Electrochemical Society, 2006, 153, A288.	1.3	106
138	Microstructural Observations of "Single Crystal―Positive Electrode Materials Before and After Long Term Cycling by Cross-section Scanning Electron Microscopy. Journal of the Electrochemical Society, 2020, 167, 020512.	1.3	106
139	Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms. Journal of the Electrochemical Society, 2011, 158, A1417.	1.3	105
140	Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte. Journal of Physical Chemistry A, 2001, 105, 4430-4439.	1.1	104
141	Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry. Journal of the Electrochemical Society, 2011, 158, A255.	1.3	104
142	High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss. Chemistry of Materials, 2015, 27, 757-767.	3.2	104
143	In situgrowth of layered, spinel, and rockâ€salt LiCoO2by laser ablation deposition. Journal of Applied Physics, 1994, 76, 2799-2806.	1.1	103
144	Coprecipitation Synthesis of Ni _{<i>x</i>} Mn _{1â^²x} (OH) ₂ Mixed Hydroxides. Chemistry of Materials, 2010, 22, 1015-1021.	3.2	101

#	Article	IF	CITATIONS
145	Behavior of Nitrogen‧ubstituted Carbon  (  N  z  C 1 â~' z  )  in Li Electrochemical Society, 1994, 141, 900-907.	/â€% 1.3	₀Li (â€% 100
146	An Autocatalytic Mechanism for the Reaction of Li[sub x]CoO[sub 2] in Electrolyte at Elevated Temperature. Journal of the Electrochemical Society, 2000, 147, 970.	1.3	100
147	Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A1998.	1.3	100
148	Reduction of the Irreversible Capacity in Hardâ€Carbon Anode Materials Prepared from Sucrose for Liâ€Ion Batteries. Journal of the Electrochemical Society, 1998, 145, 1977-1981.	1.3	99
149	Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF[sub 6] EC/DEC. Electrochemical and Solid-State Letters, 2003, 6, A180.	2.2	99
150	Structural Study of the Li–Mn–Ni Oxide Pseudoternary System of Interest for Positive Electrodes of Li-Ion Batteries. Chemistry of Materials, 2013, 25, 989-999.	3.2	99
151	Dependence of Cell Failure on Cut-Off Voltage Ranges and Observation of Kinetic Hindrance in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2018, 165, A2682-A2695.	1.3	99
152	Carbons prepared from coals for anodes of lithium-ion cells. Carbon, 1996, 34, 1501-1507.	5.4	98
153	Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries. Electrochemistry Communications, 2008, 10, 25-31.	2.3	98
154	The High Temperature Phase Diagram of Li1 + x Mn2 â^' x  O 4 and Its Implications. Jo Electrochemical Society, 1996, 143, 1783-1788.	urnal of th 1.9	¹⁰ 97
155	On the Reduction of Lithium Insertion Capacity in Hardâ€Carbon Anode Materials with Increasing Heatâ€Treatment Temperature. Journal of the Electrochemical Society, 1998, 145, 2252-2257.	1.3	97
156	Long-Term Low-Rate Cycling of LiCoO ₂ /Graphite Li-Ion Cells at 55°C. Journal of the Electrochemical Society, 2012, 159, A705-A710.	1.3	97
157	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2018, 165, A3321-A3325. Synthesis, Characterization, and Thermal Stability of	1.3	97
158	LiNi _{1/3} Mn _{1/3} Co _{1/3â[^]<i>z</i>} Mg _{<i>z</i>} O ₂ , LiNi _{1/3â[^]<i>z</i>} Mn _{1/3} Co _{1/3} Mg _{<i>z</i>} O ₂ , and LiNi _{1/3} Mn _{1/3â[^]<i>z</i>} Co _{1/3} Mg _{<i>z</i>} O ₂ .	3.2	96
159	Chemistry of Materials, 2010, 22, 1164-1172. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328, 124-135.	4.0	96
160	A Guide to Full Coin Cell Making for Academic Researchers. Journal of the Electrochemical Society, 2019, 166, A329-A333.	1.3	96
161	<i>In situ</i> X-ray diffraction experiments on lithium intercalation compounds. Canadian Journal of Physics, 1982, 60, 307-313.	0.4	95
162	The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. Electrochimica Acta, 2015, 154, 287-293.	2.6	93

#	Article	IF	CITATIONS
163	Photoelectron spectroscopy measurements of the band gap in porous silicon. Applied Physics Letters, 1993, 63, 2911-2913.	1.5	91
164	Understanding Irreversible Capacity in Li[sub x]Ni[sub 1â^'y]Fe[sub y]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2000, 147, 3598.	1.3	88
165	A Comparative Study of a Family of Sulfate Electrolyte Additives. Journal of the Electrochemical Society, 2014, 161, A264-A274.	1.3	88
166	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A3342-A3347.	1.3	88
167	Electrolyte System for High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2016, 163, A2571-A2578.	1.3	87
168	Electrochemical Characterization of the Active Surface in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. Journal of the Electrochemical Society, 2003, 150, A770.	1.3	86
169	Morphology and Safety of Li[Ni[sub x]Co[sub 1â^'2x]Mn[sub x]]O[sub 2] (0â‰ ¤ â‰⊉/2). Journal of the Electrochemical Society, 2003, 150, A1299.	1.3	84
170	Orthorhombic LiMnO2 as a High Capacity Cathode for Liâ€lon Cells. Journal of the Electrochemical Society, 1995, 142, 2906-2910.	1.3	83
171	Design and Testing of a 64-Channel Combinatorial Electrochemical Cell. Journal of the Electrochemical Society, 2003, 150, A1465.	1.3	83
172	Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes. Electrochemical and Solid-State Letters, 2011, 14, A130.	2.2	83
173	Characterization of Disordered Li _(1+<i>x</i>) Ti _{2<i>x</i>} Fe _(1–3<i>x</i>) O ₂ as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory. Chemistry of Materials, 2015, 27, 7751-7756.	3.2	83
174	The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells. Journal of the Electrochemical Society, 2011, 159, A85-A90.	1.3	82
175	Comparative Study on Prop-1-ene-1,3-sultone and Vinylene Carbonate as Electrolyte Additives for Li(Ni _{1/3} Mn ₁₃ Co _{1/3})O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1634-A1641.	1.3	82
176	Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite Lithium-Ion Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A1046-A1054.	1.3	82
177	Effects of Electrolyte Additives and Solvents on Unwanted Lithium Plating in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A1173-A1183.	1.3	82
178	Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A445.	1.3	81
179	In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass. Electrochimica Acta, 1999, 45, 51-58.	2.6	80
180	A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes. Journal of the Electrochemical Society, 2018, 165, A705-A716.	1.3	80

#	Article	IF	CITATIONS
181	Structural, Electrochemical, and Thermal Properties of Nickel-Rich LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Materials. Chemistry of Materials, 2018, 30, 8852-8860.	3.2	80
182	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. Joule, 2020, 4, 1296-1310.	11.7	80
183	Electrochemical Lithium Intercalation in  VO 2 (  B  )  in Aqueous Electrolytes. Electrochemical Society, 1996, 143, 2730-2735.	Journal of 1.3	f the 79
184	Layered LiCoO[sub 2] with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2000, 147, 508.	1.3	78
185	A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems. Journal of the Electrochemical Society, 2012, 159, A981-A989.	1.3	77
186	Reactivity of charged LiVPO4F with 1M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochemistry Communications, 2009, 11, 589-591.	2.3	76
187	In Situ Investigations of SEI Layer Growth on Electrode Materials for Lithium-Ion Batteries Using Spectroscopic Ellipsometry. Journal of the Electrochemical Society, 2012, 159, A198-A207.	1.3	76
188	Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry. Journal of the Electrochemical Society, 2012, 159, A937-A943.	1.3	76
189	Operando X-ray Diffraction Study of Polycrystalline and Single-Crystal Li _x Ni _{0.5} Mn _{0.3} Co _{0.2} O ₂ . Journal of the Electrochemical Society, 2017, 164, A2992-A2999.	1.3	76
190	Quantifying, Understanding and Evaluating the Effects of Gas Consumption in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3518-A3528.	1.3	76
191	Temperature Dependent EIS Studies Separating Charge Transfer Impedance from Contact Impedance in Lithium-Ion Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3272-A3279.	1.3	76
192	Editors' Choice—Hindering Rollover Failure of Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells during Long-Term Cycling. Journal of the Electrochemical Society, 2019, 166, A711-A724.	1.3	76
193	Study of the Electrochemical Performance of Sputtered Si[sub 1â^'x]Sn[sub x] Films. Journal of the Electrochemical Society, 2004, 151, A1628.	1.3	75
194	Extraordinary Oxygen Reduction Activity of Pt3Ni7. Journal of the Electrochemical Society, 2011, 158, B910.	1.3	75
195	Synthesis and Characterization of the Lithium-Rich Core–Shell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade. Chemistry of Materials, 2015, 27, 3366-3377.	3.2	75
196	A Cell for In Situ Xâ€Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology. Journal of the Electrochemical Society, 1997, 144, 554-557.	1.3	74
197	Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?. Journal of the Electrochemical Society, 2003, 150, A21.	1.3	74
198	Formation of Layered–Layered Composites in the Li–Co–Mn Oxide Pseudoternary System during Slow Cooling. Chemistry of Materials, 2013, 25, 912-918.	3.2	74

#	Article	IF	CITATIONS
199	Studies of Gas Generation, Gas Consumption and Impedance Growth in Li-Ion Cells with Carbonate or Fluorinated Electrolytes Using the Pouch Bag Method. Journal of the Electrochemical Society, 2017, 164, A340-A347.	1.3	74
200	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: II. LiMn[sub 2]O[sub 4] charged to 4.2 V. Journal of the Electrochemical Society, 2001, 148, A1211.	1.3	73
201	H[sub 2]O[sub 2] Release during Oxygen Reduction Reaction on Pt Nanoparticles. Electrochemical and Solid-State Letters, 2008, 11, B208.	2.2	73
202	Combinatorial Studies of Si _{1â^'<i>x</i>} O <i>_x</i> as a Potential Negative Electrode Material for Li-Ion Battery Applications. Journal of the Electrochemical Society, 2013, 160, A1587-A1593.	1.3	73
203	The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co(1/3â^'z)AlzO2 with non-aqueous electrolyte. Electrochemistry Communications, 2008, 10, 1168-1171.	2.3	72
204	LiPO ₂ F ₂ as an Electrolyte Additive in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A891-A899.	1.3	72
205	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
206	A Survey of In Situ Gas Evolution during High Voltage Formation in Li-Ion Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A760-A767.	1.3	71
207	In Situ M¶ssbauer Effect Studies of the Electrochemical Reaction of Lithium with Mechanically Alloyed Sn2Fe. Journal of the Electrochemical Society, 1998, 145, 4195-4202.	1.3	70
208	Effects of particle size and electrolyte salt on the thermal stability of Li 0.5 CoO 2. Electrochimica Acta, 2004, 49, 2661-2666.	2.6	70
209	Quantifying Changes to the Electrolyte and Negative Electrode in Aged NMC532/Graphite Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2732-A2740.	1.3	70
210	Cobalt-Free Nickel-Rich Positive Electrode Materials with a Core–Shell Structure. Chemistry of Materials, 2019, 31, 10150-10160.	3.2	69
211	Synthesis of Spherical and Dense Particles of the Pure Hydroxide Phase Ni[sub 1â^•3]Mn[sub 1â^•3]Co[sub 1â^•3](OH)[sub 2]. Journal of the Electrochemical Society, 2009, 156, A362.	1.3	67
212	Study of Electrolyte Components in Li Ion Cells Using Liquid-Liquid Extraction and Gas Chromatography Coupled with Mass Spectrometry. Journal of the Electrochemical Society, 2014, 161, A1167-A1172.	1.3	67
213	Evidence for quantum confinement in porous silicon from soft xâ€ray absorption. Applied Physics Letters, 1992, 60, 3013-3015.	1.5	66
214	Synthesis, Characterization, and Thermal Stability of Li[Ni _{1/3} Mn _{1/3} Co _{1/3â^'<i>z</i>} (MnMg) _{<i>z</i>/i>/2}]O _{2 Chemistry of Materials, 2010, 22, 5065-5073.}	.	66
215	Studies of Lithium Insertion in Ballmilled Sugar Carbons. Journal of the Electrochemical Society, 1998, 145, 62-70.	1.3	65
216	A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. Journal of Power Sources, 2014, 251, 311-318.	4.0	65

#	Article	IF	CITATIONS
217	Improving the High Voltage Cycling of Li[Ni0.42Mn0.42Co0.16]O2(NMC442)/Graphite Pouch Cells Using Electrolyte Additives. Journal of the Electrochemical Society, 2014, 161, A2250-A2254.	1.3	65
218	Development of Electrolytes for Single Crystal NMC532/Artificial Graphite Cells with Long Lifetime. Journal of the Electrochemical Society, 2018, 165, A626-A635.	1.3	65
219	Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics, 1998, 111, 289-294.	1.3	64
220	A Comparison Between the High Temperature Electrode /Electrolyte Reactions of Li[sub x]CoO[sub 2] and Li[sub x]Mn[sub 2]O[sub 4]. Journal of the Electrochemical Society, 2001, 148, A663.	1.3	64
221	Structure, Electrochemical Properties, and Thermal Stability Studies of Cathode Materials in the xLi[Mn[sub 1â^•2]Ni[sub 1â^•2]]O[sub 2]â <ylicoo[sub (x+y+z="1)." 152,="" 1â^•3]mn[sub="" 2005,="" 2]="" 2]â<zli[li[sub="" 2â^•3]]o[sub="" a1879.<="" electrochemical="" journal="" of="" pseud="" society,="" td="" the=""><td>oternary S</td><td>ystem</td></ylicoo[sub>	otern a ry S	ystem
222	Co–C–N Oxygen Reduction Catalysts Prepared by Combinatorial Magnetron Sputter Deposition. Journal of the Electrochemical Society, 2007, 154, A275.	1.3	64
223	Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives. Journal of Power Sources, 2015, 287, 377-385.	4.0	64
224	Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 130521.	1.3	64
225	Design and Testing of a Low-Cost Multichannel Pseudopotentiostat for Quantitative Combinatorial Electrochemical Measurements on Large Electrode Arrays. Electrochemical and Solid-State Letters, 2003, 6, E15.	2.2	63
226	Fluorinated electrolyte for 4.5ÂV Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307, 340-350.	4.0	63
227	Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt. Journal of the Electrochemical Society, 2004, 151, A609.	1.3	62
228	Combinatorially Prepared [LiF] _{1â^'<i>x</i>} Fe _{<i>x</i>} Nanocomposites for Positive Electrode Materials in Li-Ion Batteries. Chemistry of Materials, 2008, 20, 454-461.	3.2	62
229	Exploring Classes of Co-Solvents for Fast-Charging Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2365-A2373.	1.3	62
230	Measurements of Interdiffusion Coefficients of Transition Metals in Layered Li–Ni–Mn–Co Oxide Core–Shell Materials during Sintering. Chemistry of Materials, 2015, 27, 7765-7773.	3.2	61
231	Design of Amorphous Alloy Electrodes for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2004, 7, A310.	2.2	60
232	A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Liâ^•Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A1431.	1.3	60
233	Comparative Study of Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite as Electrolyte Additives for Li-Ion Cells. Journal of the Electrochemical Society, 2014, 161, A1084-A1089.	1.3	60
234	Building a "smart nail―for penetration tests on Li-ion cells. Journal of Power Sources, 2014, 247, 821-823.	4.0	60

#	Article	IF	CITATIONS
235	The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7ÂV Determined Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2016, 163, A35-A42.	1.3	60
236	Structural Evolution and High-Voltage Structural Stability of Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ Electrodes. Chemistry of Materials, 2019, 31, 376-386.	3.2	60
237	A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i. Journal of the Electrochemical Society, 2006, 153, A282.	1.3	59
238	The Impact of Vinylene Carbonate, Fluoroethylene Carbonate and Vinyl Ethylene Carbonate Electrolyte Additives on Electrode/Electrolyte Reactivity Studied Using Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2014, 161, A1495-A1498.	1.3	59
239	Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells. Journal of Power Sources, 2015, 295, 203-211.	4.0	59
240	Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells. Electrochimica Acta, 2018, 263, 237-248.	2.6	59
241	Ternary Electrolyte Additive Mixtures for Li-Ion Cells that Promote Long Lifetime and Less Reactivity with Charged Electrodes at Elevated Temperatures. Journal of the Electrochemical Society, 2015, 162, A1170-A1174.	1.3	58
242	The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells. Journal of Power Sources, 2015, 298, 369-378.	4.0	58
243	A Comparative Study of Vinylene Carbonate and Fluoroethylene Carbonate Additives for LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A467-A472.	1.3	57
244	A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi 0.8 Mn 0.1 Co 0.1 O 2 /graphite pouch cells. Journal of Power Sources, 2016, 318, 228-234.	4.0	57
245	The effect of turbostratic disorder on the staging transitions in lithium intercalated graphite. Synthetic Metals, 1995, 73, 1-7.	2.1	56
246	Ammonia, cyclohexane, nitrogen and water adsorption capacities of an activated carbon impregnated with increasing amounts of ZnCl2, and designed to chemisorb gaseous NH3 from an air stream. Journal of Colloid and Interface Science, 2008, 320, 423-435.	5.0	56
247	Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO ₂ /Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells. Journal of the Electrochemical Society, 2014, 161, A66-A74.	1.3	56
248	Development of Pyridine-Boron Trifluoride Electrolyte Additives for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1186-A1195.	1.3	56
249	The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate. Carbonate-free solvent blends for electrolytes in Li-ion batteries. Electrochimica Acta, 2015, 154, 227-234.	2.6	56
250	Some Fluorinated Carbonates as Electrolyte Additives for Li(Ni _{0.4} Mn _{0.4} Co _{0.2})O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A1637-A1645.	1.3	56
251	Preparation, Structure, and Thermal Stability of New NixCo1-2xMnx(OH)2(0 ≤â‰⊈/2) Phases. Chemistry of Materials, 2003, 15, 495-499.	3.2	55
252	Study of Methylene Methanedisulfonate as an Additive for Li-Ion Cells. Journal of the Electrochemical Society, 2014, 161, A84-A88.	1.3	55

#	Article	IF	CITATIONS
253	Impact of the Synthesis Conditions on the Performance of LiNi _x Co _y Al _z O ₂ with High Ni and Low Co Content. Journal of the Electrochemical Society, 2018, 165, A3544-A3557.	1.3	55
254	Impedance Reducing Additives and Their Effect on Cell Performance. Journal of the Electrochemical Society, 2012, 159, A1105-A1113.	1.3	54
255	Investigating the Effects of Magnesium Doping in Various Ni-Rich Positive Electrode Materials for Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A4025-A4033.	1.3	54
256	Studies of Si[sub 1â^'x]C[sub x] Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition. Journal of the Electrochemical Society, 2007, 154, A865.	1.3	53
257	In Situ [sup 119]Sn MoÌ^ssbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe. Journal of the Electrochemical Society, 2009, 156, A283.	1.3	53
258	Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surface Science, 2009, 603, 839-846.	0.8	53
259	Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition. Journal of Power Sources, 2009, 194, 794-800.	4.0	53
260	First principles studies of silicon as a negative electrode material for lithium-ion batteries. Canadian Journal of Physics, 2009, 87, 625-632.	0.4	53
261	Structural and Electrochemical Study of the Li–Mn–Ni Oxide System within the Layered Single Phase Region. Chemistry of Materials, 2014, 26, 7059-7066.	3.2	53
262	Comparative Study on Methylene Methyl Disulfonate (MMDS) and 1,3-Propane Sultone (PS) as Electrolyte Additives for Li-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A547-A553.	1.3	53
263	An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements. Journal of the Electrochemical Society, 2017, 164, A3545-A3555.	1.3	53
264	Use of Asymmetric Average Charge- and Average Discharge- Voltages as an Indicator of the Onset of Unwanted Lithium Deposition in Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A3595-A3601.	1.3	53
265	The Impact of Electrolyte Oxidation Products in LiNi0.5Mn1.5O4/Li4Ti5O12Cells. Journal of the Electrochemical Society, 2013, 160, A1524-A1528.	1.3	51
266	Ultra High-Precision Studies of Degradation Mechanisms in Aged LiCoO ₂ /Graphite Li-Ion Cells. Journal of the Electrochemical Society, 2014, 161, A1572-A1579.	1.3	51
267	Differential Thermal Analysis of Li-Ion Cells as an Effective Probe of Liquid Electrolyte Evolution during Aging. Journal of the Electrochemical Society, 2015, 162, A2577-A2581.	1.3	51
268	Gas Evolution during Unwanted Lithium Plating in Li-Ion Cells with EC-Based or EC-Free Electrolytes. Journal of the Electrochemical Society, 2016, 163, A3010-A3015.	1.3	51
269	Structure and Electrochemistry of Li2Cr x Mn2 â~' x  O 4 for 1.0 ⩼ x ⩽ 1.5. Journal of t Society, 1998, 145, 851-859.	he Electro	ochemical
270	Comparison of the Reactions Between Li[sub 7/3]Ti[sub 5/3]O[sub 4] or LiC[sub 6] and Nonaqueous Solvents or Electrolytes Using Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2004, 151, A2082.	1.3	50

#	Article	IF	CITATIONS
271	Fe-C-N Oxygen Reduction Catalysts Prepared by Combinatorial Sputter Deposition. Electrochemical and Solid-State Letters, 2006, 9, A463.	2.2	50
272	Lithium loss mechanisms during synthesis of layered LixNi2â^'xO2 for lithium ion batteries. Solid State Ionics, 2012, 219, 11-19.	1.3	50
273	Resistance Growth in Lithium-Ion Pouch Cells with LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ Positive Electrodes and Proposed Mechanism for Voltage Dependent Charge-Transfer Resistance. Journal of the Electrochemical Society. 2019. 166. A1779-A1784.	1.3	50
274	Ester-Based Electrolytes for Fast Charging of Energy Dense Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 12269-12280.	1.5	50
275	Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature. Journal of the Electrochemical Society, 2006, 153, A2314.	1.3	49
276	In Situ AFM Measurements of the Expansion and Contraction of Amorphous Sn-Co-C Films Reacting with Lithium. Journal of the Electrochemical Society, 2007, 154, A213.	1.3	49
277	Comparison of Li[Li[sub 1â^•9]Ni[sub 1â^•3]Mn[sub 5â^•9]]O[sub 2], Li[Li[sub 1â^•5]Ni[sub 1â^•5]Mn[sub 3â^•5]] LiNi[sub 0.5]Mn[sub 1.5]O[sub 4], and LiNi[sub 2â^•3]Mn[sub 1â^•3]O[sub 2] as High Voltage Positive Electrode Materials. Journal of the Electrochemical Society, 2011, 158, A187.	O[sub 2], 1.3	49
278	The Role of Metal Site Vacancies in Promoting Li–Mn–Ni–O Layered Solid Solutions. Chemistry of Materials, 2013, 25, 2716-2721.	3.2	49
279	Storage Studies on Li/Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives. Journal of the Electrochemical Society, 2013, 160, A709-A714.	1.3	49
280	Sulfolane-Based Electrolyte for High Voltage Li(Ni _{0.42} Mn _{0.42} Co _{0.16})O ₂ (NMC442)/Graphite Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A1424-A1431.	1.3	49
281	A Study of Stacking Faults and Superlattice Ordering in Some Li-Rich Layered Transition Metal Oxide Positive Electrode Materials. Journal of the Electrochemical Society, 2016, 163, A1394-A1400.	1.3	49
282	Mechanism of Action of the Tungsten Dopant in LiNiO ₂ Positive Electrode Materials. Advanced Energy Materials, 2022, 12, .	10.2	49
283	An Epoxyâ€Silane Approach to Prepare Anode Materials for Rechargeable Lithium Ion Batteries. Journal of the Electrochemical Society, 1995, 142, 2927-2935.	1.3	48
284	In Situ AFM Measurements of the Expansion of Nanostructured Sn–Co–C Films Reacting with Lithium. Journal of the Electrochemical Society, 2009, 156, A187.	1.3	48
285	Effects of Succinonitrile (SN) as an Electrolyte Additive on the Impedance of LiCoO ₂ /Graphite Pouch Cells during Cycling. Journal of the Electrochemical Society, 2014, 161, A506-A512.	1.3	48
286	Synthesis of Mg and Mn Doped LiCoO ₂ and Effects on High Voltage Cycling. Journal of the Electrochemical Society, 2017, 164, A1655-A1664.	1.3	48
287	Xâ€ray diffraction and xâ€ray absorption studies of porous silicon, siloxene, heatâ€treated siloxene, and layered polysilane. Journal of Applied Physics, 1994, 75, 1946-1951.	1.1	47
288	Dissolution of Transition Metals in Combinatorially Sputtered Pt[sub 1â^'xâ^'y]M[sub x]M[sub y][sup ʹ] (M,â€,M[sup ʹ]=Co,â€,Ni,â€,Mn,â€,Fe) PEMFC Electrocatalysts. Journal of the Electrochemical Society, 2006, 15 A1835.	31.3	47

#	Article	IF	CITATIONS
289	Mössbauer effect studies of sputter-deposited tin–cobalt and tin–cobalt–carbon alloys. Journal of Alloys and Compounds, 2007, 443, 114-120.	2.8	47
290	Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1149-A1157.	1.3	47
291	Exploring Impedance Growth in High Voltage NMC/Graphite Li-Ion Cells Using a Transmission Line Model. Journal of the Electrochemical Society, 2016, 163, A522-A529.	1.3	47
292	Interdiffusion of Cations from Metal Oxide Surface Coatings into LiCoO ₂ During Sintering. Chemistry of Materials, 2017, 29, 5239-5248.	3.2	47
293	Thermal Evolution of the Structure and Activity of Magnetron-Sputtered TM–C–N (TM=Fe,â€,Co) Oxygen Reduction Catalysts. Electrochemical and Solid-State Letters, 2007, 10, B6.	2.2	46
294	Studies of the Effect of Varying Prop-1-ene-1,3-sultone Content in Lithium Ion Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1884-A1889.	1.3	46
295	The reactivity of charged positive Li1-n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Power Sources, 2018, 390, 78-86.	4.0	46
296	Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of Li _x NiO ₂ Âwith the Electrolyte of Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2826-A2833.	1.3	46
297	Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2014, 161, A1782-A1787.	1.3	45
298	Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /graphite pouch cells: electrochemical, GC-MS and XPS analysis. Physical Chemistry Chemical Physics, 2015, 17, 27062-27076.	1.3	45
299	Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. Journal of Power Sources, 2016, 324, 704-711.	4.0	45
300	Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials. Measurement Science and Technology, 2005, 16, 212-220.	1.4	44
301	The Rate of Active Lithium Loss from a Soft Carbon Negative Electrode as a Function of Temperature, Time and Electrode Potential. Journal of the Electrochemical Society, 2012, 159, A1672-A1681.	1.3	44
302	Understanding the Role of Prop-1-ene-1,3-Sultone and Vinylene Carbonate in LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cells: Electrochemical, GC-MS and XPS Analysis. Journal of the Electrochemical Society, 2015, 162, A2635-A2645.	1.3	44
303	Application ofin situMössbauer effect methods for the study of electrochemical reactions in lithium-ion battery electrode materials. Physical Review B, 1999, 59, 3494-3500.	1.1	43
304	A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. Review of Scientific Instruments, 2001, 72, 3313-3319.	0.6	43
305	Computational Estimates of Stability of Redox Shuttle Additives for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A1922.	1.3	43
306	Comparative study of Li[Co1â^zAlz]O2 prepared by solid-state and co-precipitation methods. Electrochimica Acta, 2009, 54, 4655-4661.	2.6	43

#	Article	IF	CITATIONS
307	Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi[sub 1â^•3]Mn[sub 1â^•3]Co[sub (1â^•3â''z)]Al[sub z]O[sub 2] Positive Electrode Materials. Journal of the Electrochemical Society, 2009, 156, A343.	1.3	43
308	Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries. Journal of Power Sources, 2015, 287, 184-195.	4.0	43
309	Special Synergy between Electrolyte Additives and Positive Electrode Surface Coating to Enhance the Performance of Li[Ni _{0.6} Mn _{0.2} Co _{0.2}]O ₂ /Graphite Cells. Journal of the Electrochemical Society, 2016, 163, A2531-A2538.	1.3	43
310	Magnetron Sputtered Fe–C–N, Fe–C, and C–N Based Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 2008, 155, B547.	1.3	42
311	Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. Journal of Power Sources, 2014, 251, 187-194.	4.0	42
312	The Effects of a Ternary Electrolyte Additive System on the Electrode/Electrolyte Interfaces in High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2016, 163, A1001-A1009.	1.3	42
313	Combinations of LiPO ₂ F ₂ and Other Electrolyte Additives in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A1718-A1724.	1.3	42
314	In Situ Xâ€Ray Study of LiMnO2. Journal of the Electrochemical Society, 1998, 145, 2672-2677.	1.3	41
315	Al-M (M=Cr,â€,Fe,â€,Mn,â€,Ni) Thin-Film Negative Electrode Materials. Journal of the Electrochemical Society, 2006, 153, A484.	1.3	41
316	Preparation of Co _{1â^'<i>z</i>} Al _{<i>z</i>} (OH) ₂ (NO ₃) _{<i>z</i>} Layered Double Hydroxides and Li(Co _{1â^'<i>z</i>} Al _{<i>z</i>})O ₂ . Chemistry of Materials, 2009, 21, 56-62.	3.2	41
317	Effects of Upper Cutoff Potential on LaPO ₄ -Coated and Uncoated Li[Ni _{0.42} Mn _{0.42} Co _{0.16}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A272-A280.	1.3	41
318	In Situ XRD Studies During Synthesis of Single-Crystal LiNiO ₂ , LiNi _{0.975} Mg _{0.025} O ₂ , and LiNi _{0.95} Al _{0.05} O ₂ Cathode Materials. Journal of the Electrochemical Society, 2020, 167, 100501.	1.3	41
319	Thermodynamic Stability of Chemically Delithiated Li ( Li x Mn2 â^' x  )  O 4. J Society, 1998, 145, 569-575.	ournal of 1.3	the Electroc
320	ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochemistry Communications, 2004, 6, 724-728.	2.3	40
321	Reactivity of Li[sub y][Ni[sub x]Co[sub 1â [~] 2x]Mn[sub x]]O[sub 2] (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC. Journal of the Electrochemical Society, 2005, 152, A566.	1.3	40
322	Synthesis and Characterization of Mg Substituted LiCoO[sub 2]. Journal of the Electrochemical Society, 2010, 157, A782.	1.3	40
323	Ternary and Quaternary Electrolyte Additive Mixtures for Li-Ion Cells That Promote Long Lifetime, High Discharge Rate and Better Safety. Journal of the Electrochemical Society, 2014, 161, A1261-A1265.	1.3	40
324	Rapid Impedance Growth and Gas Production at the Li-Ion Cell Positive Electrode in the Absence of a Negative Electrode. Journal of the Electrochemical Society, 2016, 163, A3069-A3077.	1.3	40

#	Article	IF	CITATIONS
325	Entropy of the intercalation compoundLixMo6Se8from calorimetry of electrochemical cells. Physical Review B, 1985, 32, 3316-3318.	1.1	39
326	Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2. Chemistry of Materials, 2001, 13, 2078-2083.	3.2	39
327	Characterization and PEMFC Testing of Pt[sub 1â^'x]M[sub x] (M=Ru,Mo,Co,Ta,Au,Sn) Anode Electrocatalyst Composition Spreads. Journal of the Electrochemical Society, 2007, 154, B566.	1.3	39
328	In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell. Electrochimica Acta, 2015, 180, 234-240.	2.6	39
329	Combinatorial Study of the Li–Ni–Mn–Co Oxide Pseudoquaternary System for Use in Li–Ion Battery Materials Research. ACS Combinatorial Science, 2015, 17, 381-391.	3.8	39
330	Performance and Degradation of LiFePO ₄ /Graphite Cells: The Impact of Water Contamination and an Evaluation of Common Electrolyte Additives. Journal of the Electrochemical Society, 2020, 167, 130543.	1.3	39
331	A study of the mechanical and electrical properties of a polymer/carbon black binder system used in battery electrodes. Journal of Applied Polymer Science, 2003, 90, 1891-1899.	1.3	38
332	Some Physical Properties of Ethylene Carbonate-Free Electrolytes. Journal of the Electrochemical Society, 2018, 165, A126-A131.	1.3	38
333	A Systematic Study of Electrolyte Additives in Single Crystal and Bimodal LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2021, 168, 090503.	1.3	38
334	Direct comparison of 2,5-di-tert-butyl-1,4-dimethoybenzene and 4-tert-butyl-1,2-dimethoxybenzene as redox shuttles in LiFePO4-based Li-ion cells. Electrochemistry Communications, 2007, 9, 1497-1501.	2.3	37
335	Determination of the Time Dependent Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry. Journal of Physical Chemistry C, 2014, 118, 29533-29541.	1.5	37
336	A Study of Three Ester Co-Solvents in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3556-A3562.	1.3	37
337	A Comparison of the Performance of Different Morphologies of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Using Isothermal Microcalorimetry, Ultra-High Precision Coulometry, and Long-Term Cycling. Journal of the Electrochemical Society, 2020, 167, 060530.	1.3	37
338	The Negative Impact of Layered-Layered Composites on the Electrochemistry of Li-Mn-Ni-O Positive Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A606-A613.	1.3	36
339	Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ as a Superior Alternative to LiFePO ₄ for Long-Lived Low Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2022, 169, 050512.	1.3	36
340	A novel hermetic differential scanning calorimeter (DSC) sample crucible. Thermochimica Acta, 2002, 386, 153-160.	1.2	35
341	On the determination of platinum particle size in carbon-supported platinum electrocatalysts for fuel cell applications. Carbon, 2003, 41, 2769-2777.	5.4	35
342	The Impact of Zr Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li[Ni1/3Mn1/3â^'zCo1/3Zrz]O2. Journal of the Electrochemical Society, 2011, 158, A428.	1.3	35

#	Article	IF	CITATIONS
343	Impedance Reducing Additives and Their Effect on Cell Performance. Journal of the Electrochemical Society, 2012, 159, A1095-A1104.	1.3	35
344	A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon, 2012, 50, 3717-3723.	5.4	35
345	The Impact of Intentionally Added Water to the Electrolyte of Li-ion Cells. Journal of the Electrochemical Society, 2013, 160, A2281-A2287.	1.3	35
346	The Impact of Electrolyte Additives Determined Using Isothermal Microcalorimetry. ECS Electrochemistry Letters, 2013, 2, A106-A109.	1.9	35
347	A New Method for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells, Using Fourier Transform Infrared Spectroscopy and Machine Learning. Journal of the Electrochemical Society, 2018, 165, A256-A262.	1.3	35
348	Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model. Journal of the Electrochemical Society, 2019, 166, A1611-A1622.	1.3	35
349	Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route. Journal of the Electrochemical Society, 2008, 155, B953.	1.3	34
350	Measuring Oxygen Release from Delithiated LiNi _x Mn _y Co _{1-x-y} O ₂ and Its Effects on the Performance of High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3025-A3037.	1.3	34
351	Synergistic Effect of LiPF ₆ and LiBF ₄ as Electrolyte Salts in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A2426-A2433.	1.3	34
352	A Mössbauer effect and X-ray diffraction investigation of Ti–Sn intermetallic compounds: I. Equilibrium phases. Journal of Alloys and Compounds, 2003, 353, 60-64.	2.8	33
353	Methyl Acetate as a Co-Solvent in NMC532/Graphite Cells. Journal of the Electrochemical Society, 2018, 165, A1027-A1037.	1.3	33
354	Impact of a Titanium-Based Surface Coating Applied to Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ on Lithium-Ion Cell Performance. ACS Applied Energy Materials, 2018, 1, 7052-7064.	2.5	33
355	A Critical Evaluation of the Advanced Electrolyte Model. Journal of the Electrochemical Society, 2018, 165, A3350-A3359.	1.3	33
356	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part I. Two-Step Lithiation Method for Al- or Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 040531.	1.3	33
357	Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1â^'x]Co[sub x] (0â‰æâ‰Ø.5) Films. Journal of the Electrochemical Society, 2008, 155, B108.	1.3	32
358	How Phase Transformations during Cooling Affect Li-Mn-Ni-O Positive Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1134-A1138.	1.3	32
359	Effect of LiPF6 concentration in Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch cells operated at 4.5ÂV. Journal of Power Sources, 2015, 300, 419-429.	4.0	32
360	Electrochemical Reaction of the Si[sub 1â^'x]Zn[sub x] Binary System with Li. Journal of the Electrochemical Society, 2005, 152, A2335.	1.3	31

#	Article	IF	CITATIONS
361	Dependence of the Heat of Reaction of Li[sub 0.81]C[sub 6]â€,(0.1â€,V), Li[sub 7]Ti[sub 5]O[sub 12]â€,(1.55â€, Li[sub 0.5]VO[sub 2]â€,(2.45â€,V) Reacting with Nonaqueous Solvents or Electrolytes on the Average Potential of the Electrode Material. Journal of the Electrochemical Society, 2006, 153, A310.	V), and 1.3	31
362	Structural and electrochemical studies of (SnxCo1â^'x)60C40 alloys prepared by mechanical attriting. Electrochimica Acta, 2009, 54, 4534-4539.	2.6	31
363	Relative Impact of Al or Mg Substitution on the Thermal Stability of LiCo[sub 1â^'z]M[sub z]O[sub 2] (M=Al or Mg) by Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2009, 156, A917.	1.3	31
364	Studies of the Effect of Triphenyl Phosphate on Positive Electrode Symmetric Li-Ion Cells. Journal of the Electrochemical Society, 2012, 159, A1467-A1473.	1.3	31
365	Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids and Surfaces B: Biointerfaces, 2012, 91, 90-96.	2.5	31
366	A systematic study of some promising electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite, Li[Ni0.5Mn0.3Co0.2]/graphite and Li[Ni0.6Mn0.2Co0.2]/graphite pouch cells. Journal of Power Sources, 2015, 299, 130-138.	4.0	31
367	Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols. Journal of Power Sources, 2016, 306, 233-240.	4.0	31
368	A study of highly conductive ester co-solvents in Li[Ni0.5Mn0.3Co0.2]O2/Graphite pouch cells. Electrochimica Acta, 2018, 270, 215-223.	2.6	31
369	Measuring Thickness Changes in Thin Films Due to Chemical Reaction by Monitoring the Surface Roughness with In Situ Atomic Force Microscopy. Microscopy and Microanalysis, 2002, 8, 422-428.	0.2	30
370	Mechanical and electrical properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (fluoride-tetr electrode binder for lithium-ion batteries. Journal of Applied Polymer Science, 2004, 91, 2958-2965.	afluoroet 1.3	hylene-propy 30
371	Electrochemical Reaction of the SiAg Binary System with Li. Journal of the Electrochemical Society, 2005, 152, A1445.	1.3	30
372	An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn[sub 30]Co[sub 30]Co[sub 30]C[sub 40]. Journal of the Electrochemical Society, 2010, 157, A326.	1.3	30
373	Impact of Al or Mg substitution on the Thermal Stability of Li[sub 1.05]Mn[sub 1.95â~'z]M[sub z]O[sub 4] (M=Al or Mg). Journal of the Electrochemical Society, 2010, 157, A798.	1.3	30
374	Effects of Fluorinated Carbonate Solvent Blends on High Voltage Parasitic Reactions in Lithium Ion Cells Using OCV Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2016, 163, A2131-A2138.	1.3	30
375	The Effect of Different Li(Ni _{1-x-y} Mn _x Co _y)O ₂ Positive Electrode Materials and Coatings on Parasitic Heat Flow as Measured by Isothermal Microcalorimetry, Ultra-High Precision Coulometry and Long Term Cycling. Journal of the Electrochemical Society. 2017. 164. A1203-A1212.	1.3	30
376	The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3445-A3453.	1.3	30
377	Different Positive Electrodes for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2022, 169, 040517.	1.3	30
378	Nanocomposites in the Sn–Mn–C system produced by mechanical alloying. Journal of Alloys and Compounds, 2000, 297, 122-128.	2.8	29

#	Article	IF	CITATIONS
379	Production and visualization of quaternary combinatorial thin films. Measurement Science and Technology, 2006, 17, 1399-1404.	1.4	29
380	The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A383-A386.	1.3	29
381	A High Precision Study of Electrolyte Additive Combinations Containing Vinylene Carbonate, Ethylene Sulfate, Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite in Li[Ni _{1/3} Mn _{1/3} Co _{1/3}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1890-A1897.	1.3	29
382	Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells. Journal of Power Sources, 2016, 329, 387-397.	4.0	29
383	High-Precision Coulometry Studies of the Impact of Temperature and Time on SEI Formation in Li-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A1529-A1536.	1.3	29
384	Factors that Affect Capacity in the Low Voltage Kinetic Hindrance Region of Ni-Rich Positive Electrode Materials and Diffusion Measurements from a Reinvented Approach. Journal of the Electrochemical Society, 2021, 168, 070503.	1.3	29
385	Electrochemical and thermal studies of Li[NixLi(1/3â^'2x/3)Mn(2/3â^'x/3)]O2 (x=1/12, 1/4, 5/12, and 1/2). Electrochimica Acta, 2005, 50, 4778-4783.	2.6	28
386	Phases Formed in Al-Doped Ni[sub 1/3]Mn[sub 1/3]Co[sub 1/3](OH)[sub 2] Prepared by Coprecipitation: Formation of Layered Double Hydroxide. Journal of the Electrochemical Society, 2008, 155, A642.	1.3	28
387	Study of the Consumption of Vinylene Carbonate in Li[Ni _{0.33} Mn _{0.33} Co _{0.33}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1618-A1624.	1.3	28
388	A Search for Low-Irreversible Capacity and High-Reversible Capacity Positive Electrode Materials in the Li–Ni–Mn–Co Pseudoquaternary System. Chemistry of Materials, 2016, 28, 55-66.	3.2	28
389	The amorphous range in sputtered Si–Al–Sn films. Thin Solid Films, 2003, 443, 144-150.	0.8	27
390	Templated Ru/Se/C electrocatalysts for oxygen reduction. Electrochimica Acta, 2009, 54, 1350-1354.	2.6	27
391	Investigation of copper oxide impregnants prepared from various precursors for respirator carbons. Journal of Colloid and Interface Science, 2010, 341, 162-170.	5.0	27
392	Dissolution of Ni from High Ni Content Pt1â^'xNix Alloys. Journal of the Electrochemical Society, 2011, 158, B905.	1.3	27
393	A Combinatorial Study of the Sn-Si-C System for Li-Ion Battery Applications. Journal of the Electrochemical Society, 2012, 159, A711-A719.	1.3	27
394	The spinel and cubic rocksalt solid-solutions in the Li–Mn–Ni oxide pseudo-ternary system. Solid State Ionics, 2013, 242, 1-9.	1.3	27
395	Tungsten Infused Grain Boundaries Enabling Universal Performance Enhancement of Co-Free Ni-Rich Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 120514.	1.3	27
396	Preparation and characterization of sputtered Fe1â^'xNx films. Thin Solid Films, 2005, 493, 60-66.	0.8	26

#	Article	IF	CITATIONS
397	Synthesis, Characterization, and Thermal Stability of LiCo[sub 1â^'z][MnMg][sub z/2]O[sub 2]. Journal of the Electrochemical Society, 2010, 157, A993.	1.3	26
398	Explicit Conversion between Different Equivalent Circuit Models for Electrochemical Impedance Analysis of Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A228-A234.	1.3	26
399	Materials preparation by ball milling. Canadian Journal of Physics, 2000, 78, 211-229.	0.4	25
400	Insignificant impact of designed oxygen release from high capacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2 (x+y=2/3) positive electrodes during the cycling of Li-ion cells. Electrochimica Acta, 2006, 51, 3413-3416.	2.6	25
401	The Impact of the Addition of Rare Earth Elements to Si[sub 1â^'x]Sn[sub x] Negative Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A1211.	1.3	25
402	Acid Stability and Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1â^'x]Ta[sub x]â€,(0â‰ ¤ â‰ ⊉) Films. Journal of the Electrochemical Society, 2006, 153, A2304.	1.3	25
403	The effect of boron doping into Co-C-N and Fe-C-N electrocatalysts on the oxygen reduction reaction. Electrochimica Acta, 2008, 53, 2423-2429.	2.6	25
404	The Effect of Al Substitution on the Reactivity of Delithiated LiNi[sub (0.5â^²z)]Mn[sub (0.5â^²z)]A1[sub 2] with Nonaqueous Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, A155.	2.2	25
405	RDE Measurements of ORR Activity of Pt[sub 1â^x]Ir[sub x] (0 <x<0.3) area="" high="" nstf-coated<br="" on="" surface="">Glassy Carbon Disks. Journal of the Electrochemical Society, 2010, 157, B207.</x<0.3)>	1.3	25
406	A Study of Li-Ion Cells Operated to 4.5 V and at 55°C. Journal of the Electrochemical Society, 2016, 163, A2399-A2406.	1.3	25
407	Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. Journal of the Electrochemical Society, 2018, 165, A3000-A3013.	1.3	25
408	How do Depth of Discharge, C-rate and Calendar Age Affect Capacity Retention, Impedance Growth, the Electrodes, and the Electrolyte in Li-Ion Cells?. Journal of the Electrochemical Society, 0, , .	1.3	25
409	SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness. Applied Surface Science, 2007, 253, 3201-3207.	3.1	24
410	Comparison of Mechanically Milled and Sputter Deposited Tin–Cobalt–Carbon Alloys Using Small Angle Neutron Scattering. Journal of the Electrochemical Society, 2009, 156, A1034.	1.3	24
411	Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2. Water Research, 2011, 45, 6173-6180.	5.3	24
412	Activation Energies of Crystallization Events in Electrochemically Lithiated Silicon. Journal of the Electrochemical Society, 2011, 158, A1207.	1.3	24
413	Ultra High Precision Study on High Capacity Cells for Large Scale Automotive Application. Journal of the Electrochemical Society, 2013, 160, A2306-A2310.	1.3	24
414	Effect of Substituting LiBF ₄ for LiPF ₆ in High Voltage Lithium-Ion Cells Containing Electrolyte Additives. Journal of the Electrochemical Society, 2016, 163, A1686-A1692.	1.3	24

#	Article	IF	CITATIONS
415	Effects of Surface Coating on Gas Evolution and Impedance Growth at Li[Ni _x Mn _y Co _{1-x-y}]O ₂ Positive Electrodes in Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3174-A3181.	1.3	24
416	Correlating Cation Mixing with Li Kinetics: Electrochemical and Li Diffusion Measurements on Li-Deficient LiNiO ₂ and Li-Excess LiNi _{0.5} Mn _{0.5} O ₂ . Journal of the Electrochemical Society, 2021, 168, 090535.	1.3	24
417	A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry. Surface Science, 2008, 602, 2927-2935.	0.8	23
418	Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A975.	1.3	23
419	Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells: Vinylene Carbonate and Ethylene Sulfate. Journal of the Electrochemical Society, 2021, 168, 010514.	1.3	23
420	Scanning Micro X-ray Fluorescence (μXRF) as an Effective Tool in Quantifying Fe Dissolution in LiFePO ₄ Cells: Towards a Mechanistic Understanding of Fe Dissolution. Journal of the Electrochemical Society, 2020, 167, 130539.	1.3	23
421	Entropy of intercalation compounds. II. Calorimetry of electrochemical cells of the Chevrel compound LixMo6Se8for 0⩽x⩽4. Journal of Physics C: Solid State Physics, 1986, 19, 5135-5148.	1.5	22
422	Thermogravimetric analysis to determine the lithium to manganese atomic ratio in Li1+xMn2â^'xO4. Applied Physics Letters, 1995, 66, 2487-2489.	1.5	22
423	Comparison of the Reaction of Li[sub x]Si or Li[sub 0.81]C[sub 6] with 1â€,M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. Electrochemical and Solid-State Letters, 2006, 9, A340.	2.2	22
424	Understanding the role of each ingredient in a basic copper carbonate based impregnation recipe for respirator carbons. Journal of Colloid and Interface Science, 2009, 337, 313-321.	5.0	22
425	The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications. Journal of Hazardous Materials, 2010, 180, 419-428.	6.5	22
426	Importance of nanostructure for high capacity negative electrode materials for Li-ion batteries. Electrochemistry Communications, 2010, 12, 1041-1044.	2.3	22
427	Surface-Electrolyte Interphase Formation in Lithium-Ion Cells Containing Pyridine Adduct Additives. Journal of the Electrochemical Society, 2016, 163, A773-A780.	1.3	22
428	A comparative study on the reactivity of charged Ni-rich and Ni-poor positive electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Energy Chemistry, 2021, 60, 523-530.	7.1	22
429	(Sn[sub 0.5]Co[sub 0.5])[sub 1â^'y]C[sub y] Alloy Negative Electrode Materials Prepared by Mechanical Attriting. Journal of the Electrochemical Society, 2009, 156, A204.	1.3	21
430	Study of Sn[sub 30](Co[sub 1â^'x]Fe[sub x])[sub 30]C[sub 40] Alloy Negative Electrode Materials Prepared by Mechanical Attriting. Journal of the Electrochemical Society, 2009, 156, A13.	1.3	21
431	Combinatorial Synthesis of Mixed Transition Metal Oxides for Lithium-Ion Batteries. ACS Combinatorial Science, 2011, 13, 186-189.	3.8	21
432	ARC Studies of the Effects of Electrolyte Additives on the Reactivity of Delithiated Li _{1-x} [Ni _{1/3} Mn _{1/3} Co _{1/3}]O ₂ and Li _{1-x} [Ni _{0.8} Co _{0.15} Al _{0.05}]O ₂ Positive Electrode Materials with Electrolyte. Journal of the Electrochemical Society, 2014, 161, A1394-A1398.	1.3	21

#	Article	IF	CITATIONS
433	A Comparative Study of Pyridine-Boron Trifluoride, Pyrazine-(BF ₃) ₂ and Triazine-(BF ₃) ₃ as Electrolyte Additives for Lithium-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A2066-A2074.	1.3	21
434	Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells. Journal of Power Sources, 2016, 328, 433-442.	4.0	21
435	Improving Linear Alkyl Carbonate Electrolytes with Electrolyte Additives. Journal of the Electrochemical Society, 2017, 164, A1239-A1250.	1.3	21
436	Preventing Interdiffusion during Synthesis of Ni-Rich Core–Shell Cathode Materials. ACS Energy Letters, 2022, 7, 2189-2195.	8.8	21
437	Structure, Electrochemical Properties, and Thermal Stability Studies of Li[Ni[sub 0.2]Co[sub 0.6]Mn[sub 0.2]]O[sub 2]. Journal of the Electrochemical Society, 2005, 152, A1874.	1.3	20
438	Exclusion of Salt Solutions from Activated Carbon Pores and the Relationship to Contact Angle on Graphite. Journal of Physical Chemistry C, 2007, 111, 3680-3684.	1.5	20
439	Alternative Catalyst Supports Deposited on Nanostructured Thin Films for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B187.	1.3	20
440	A comparison of sputtered and mechanically milled Cu6Sn5Â+ÂC materials for Li-ion battery negative electrodes. Journal of Power Sources, 2012, 216, 139-144.	4.0	20
441	Binary Additive Blends Including Pyridine Boron Trifluoride for Li-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A1693-A1701.	1.3	20
442	Using the Charge-Discharge Cycling of Positive Electrode Symmetric Cells to Find Electrolyte/Electrode Combinations with Minimum Reactivity. Journal of the Electrochemical Society, 2017, 164, A3349-A3356.	1.3	20
443	1,2,6-Oxadithiane 2,2,6,6-tetraoxide as an Advanced Electrolyte Additive for Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2019, 166, A2665-A2672.	1.3	20
444	Study of Electrolyte and Electrode Composition Changes vs Time in Aged Li-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 020532.	1.3	20
445	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part I. Material Properties, ARC Safety Tests, Gas Generation, and Room Temperature Cycling. Journal of the Electrochemical Society, 2021, 168, 110543.	1.3	20
446	Electrochemical and In Situ XRD Studies of the Li Reaction with Combinatorially Sputtered Mo[sub 1â^'x]Sn[sub x] (0 â‰≇€‰x   â‰≇€‰0.50) Thin Films. Journal of the Electrochemical Society, 20	04, ¹ 131,4	470 ¹⁹
447	Comparison of Thermal Stability Between Lithiated Sn[sub 30]Co[sub 30]C[sub 40], LiSi, or Li[sub 0.81]C[sub 6] and 1â€,M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. Journal of the Electrochemical Society, 2008, 155, A921.	1.3	19
448	Combinatorial Study of the Sn–Cu–C System for Li-Ion Battery Negative Electrode Materials. Journal of the Electrochemical Society, 2010, 157, A1085.	1.3	19
449	The Reactivity of Charged Electrode Materials with Electrolytes Containing the Flame Retardant, Triphenyl Phosphate. Journal of the Electrochemical Society, 2012, 159, A1834-A1837.	1.3	19
450	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. Journal of the Electrochemical Society, 2021, 168, 120508.	1.3	19

#	Article	IF	CITATIONS
451	Solid-State Synthesis as a Method for the Substitution of Al for Co in LiNi[sub 1â^•3]Mn[sub 1â^•3]Co[sub (1â^•3â^'z)]Al[sub z]O[sub 2]. Journal of the Electrochemical Society, 2009, 156, A796.	1.3	18
452	The effect of heating temperature and nitric acid treatments on the performance of Cu- and Zn-based broad spectrum respirator carbons. Journal of Colloid and Interface Science, 2011, 364, 178-194.	5.0	18
453	Effects of Electrode Density on the Safety of NCA Positive Electrode for Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1108-A1111.	1.3	18
454	The effect of electrolyte additives on both LaPO4-coated Li(Ni0.4Mn0.4Co0.2)O2 and uncoated Li(Ni0.4Mn0.4Co0.2)O2 in Li-ion pouch cells. Journal of Power Sources, 2016, 306, 516-525.	4.0	18
455	Measuring the Parasitic Heat Flow of Lithium Ion Pouch Cells Containing EC-Free Electrolytes. Journal of the Electrochemical Society, 2017, 164, A567-A573.	1.3	18
456	Dioxazolone and Nitrile Sulfite Electrolyte Additives for Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2961-A2967.	1.3	18
457	Investigating the Removal of Layered Double Hydroxides in [Ni _{0.80} Co _{0.15}] _{0.95-x} Al _{0.05+x} (OH) ₂ (x = 0,)	Tj ETiQxq1 1	0.7884314 rg
458	Effects of Fluorine Doping on Nickel-Rich Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 080518.	1.3	18
459	Gas Adsorption Properties of the Ternary ZnO/CuO/CuCl ₂ Impregnated Activated Carbon System for Multigas Respirator Applications Assessed through Combinatorial Methods and Dynamic Adsorption Studies. ACS Combinatorial Science, 2011, 13, 639-645.	3.8	17
460	Some Effects of Intentionally Added Water on LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A1678-A1685.	1.3	17
461	Isothermal microcalorimetry as a tool to study solid–electrolyte interphase formation in lithium-ion cells. Physical Chemistry Chemical Physics, 2016, 18, 11383-11390.	1.3	17
462	Study of the consumption of the additive prop-1-ene-1,3-sultone in Li[Ni 0.33 Mn 0.33 Co 0.33]O 2 /graphite pouch cells and evidence of positive-negative electrode interaction. Journal of Power Sources, 2016, 313, 152-163.	4.0	17
463	An automated system for performing continuous viscosity <i>versus</i> temperature measurements of fluids using an Ostwald viscometer. Review of Scientific Instruments, 2017, 88, 095101.	0.6	17
464	Effect of Choices of Positive Electrode Material, Electrolyte, Upper Cut-Off Voltage and Testing Temperature on the Life Time of Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A3195-A3204.	1.3	17
465	A Low-Cost Instrument for Dry Particle Fusion Coating of Advanced Electrode Material Particles at the Laboratory Scale. Journal of the Electrochemical Society, 2020, 167, 110509.	1.3	17
466	Studies of the SEI layers in Li(Ni _{0.5} Mn _{0.3} Co _{0.2})O ₂ /Artificial Graphite Cells after Formation and after Cycling. Journal of the Electrochemical Society, 2020, 167, 120507.	1.3	17
467	A Mössbauer effect and X-ray diffraction investigation of Ti–Sn intermetallic compounds:. Journal of Alloys and Compounds, 2003, 353, 65-73.	2.8	16
468	Electrochemical and Thermal Comparisons of Li[Ni[sub 0.1]Co[sub 0.8]Mn[sub 0.1]]O[sub 2] Synthesized at Different Temperatures (900, 1000, and 1100°C). Journal of the Electrochemical Society, 2005, 152, A19.	1.3	16

#	Article	IF	CITATIONS
469	Mössbauer effect and X-ray diffraction investigation of Si–Fe thin films. Philosophical Magazine, 2006, 86, 5017-5030.	0.7	16
470	Advantages of Simultaneous Substitution of Co in Li[Ni[sub 1â^•3]Mn[sub 1â^•3]Co[sub 1â^•3]]O[sub 2] by Ni ar Al. Electrochemical and Solid-State Letters, 2009, 12, A81.	1d _{2.2}	16
471	A new simple tubular flow cell for use with variable angle spectroscopic ellipsometry: A high throughput in situ protein adsorption study. Surface Science, 2009, 603, 2888-2895.	0.8	16
472	A Systematic Study of the Concentration of Lithium Hexafluorophosphate (LiPF ₆) as a Salt for LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1278-A1283.	1.3	16
473	The Effect of Methyl Acetate, Ethylene Sulfate, and Carbonate Blends on the Parasitic Heat Flow of NMC532/Graphite Lithium Ion Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A867-A875.	1.3	16
474	Determining Parasitic Reaction Enthalpies in Lithium-Ion Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2018, 165, A3449-A3458.	1.3	16
475	A Comparison of NMC/Graphite Pouch Cells and Commercially Available LiCoO ₂ /Graphite Pouch Cells Tested to High Potential. Journal of the Electrochemical Society, 2018, 165, A456-A462.	1.3	16
476	Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. Journal of the Electrochemical Society, 2019, 166, A3250-A3253.	1.3	16
477	Effects of Graphite Heat-Treatment Temperature on Single-Crystal Li[Ni ₅ Mn ₃ Co ₂]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 080543.	1.3	16
478	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part II. One-Step Lithiation Method of Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 050506.	1.3	16
479	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part II. Long-Term Cycling, Stack Pressure Growth, Isothermal Microcalorimetry, and Lifetime Projection. Journal of the Electrochemical Society, 2022, 169, 010501.	1.3	16
480	Photoelectron spectroscopy studies of Li1+xMn2â^'xO4for Li ion battery applications. Journal of Applied Physics, 1996, 80, 4141-4152.	1.1	15
481	Structure and properties of sequentially sputtered molybdenum–tin films. Thin Solid Films, 2002, 408, 111-122.	0.8	15
482	Combinatorial synthesis and rapid characterization of Mo1â^'xSnx (0⩽x⩽1) thin films. Thin Solid Films, 2003, 440, 11-18.	0.8	15
483	Effect of Annealing on Sn[sub 30]Co[sub 30]C[sub 40] Prepared by Mechanical Attriting. Electrochemical and Solid-State Letters, 2008, 11, A187.	2.2	15
484	Studies of LiNi[sub 2/3]Mn[sub 1/3]O[sub 2]: A Positive Electrode Material That Cycles Well to 4.6 V. Journal of the Electrochemical Society, 2010, 157, A399.	1.3	15
485	An In Situ Study of the Electrochemical Reaction of Li with Amorphousâ^•Nanostructured Cu6Sn5 + C. Journal of the Electrochemical Society, 2011, 158, A1328.	1.3	15
486	Positive Electrode Materials in the Li-Mn-Ni-O System Exhibiting Anomalous Capacity Growth during Extended Cycling. Journal of the Electrochemical Society, 2014, 161, A308-A317.	1.3	15

#	Article	IF	CITATIONS
487	The Effect of Lithium Content and Core to Shell Ratio on Structure and Electrochemical Performance of Core-Shell Li _(1+x) [Ni _{0.6} Mn _{0.4}] _(1â^xx) O ₂ Li _{(1+y)Electrode Materials. Journal of the Electrochemical Society, 2015, 162, A269-A277.}	b ^{1.} 3Ni≺sub	15.2
488	Cobalt-Free Core-Shell Structure with High Specific Capacity and Long Cycle Life as an Alternative to Li[Ni _{0.8} Mn _{0.1} Co _{0.1}]O ₂ . Journal of the Electrochemical Society, 2020, 167, 120533.	1.3	15
489	Dependence of the Intercalation of Li in  WO 3 on the Preparation of the  WO 3 Host. Journal of Electrochemical Society, 1992, 139, 2406-2409.	f the 1.3	14
490	The effect of co-impregnated acids on the performance of Zn-based broad spectrum respirator carbons. Journal of Hazardous Materials, 2012, 235-236, 279-285.	6.5	14
491	The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells. Journal of Power Sources, 2016, 330, 175-185.	4.0	14
492	A Tale of Two Additives: Effects of Glutaric and Citraconic Anhydrides on Lithium-Ion Cell Performance. Journal of the Electrochemical Society, 2019, 166, A793-A801.	1.3	14
493	High Temperature Testing of NMC/Graphite Cells for Rapid Cell Performance Screening and Studies of Electrolyte Degradation. Journal of the Electrochemical Society, 2022, 169, 040538.	1.3	14
494	The Use of LiFSI and LiTFSI in LiFePO ₄ /Graphite Pouch Cells to Improve High-Temperature Lifetime. Journal of the Electrochemical Society, 2022, 169, 040560.	1.3	14
495	A combinatorial sputtering method to prepare a wide range of A/B artificial superlattice structures on a single substrate. Journal of Magnetism and Magnetic Materials, 2003, 261, 399-409.	1.0	13
	Study of the mechanical and electrical properties of carbon/poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	392 Td (flı	uoride-tetra
496	application as binder for lithium-ion battery electrodes. Journal of Applied Polymer Science, 2004, 91, 2949-2957.	1.3	13
497	Fe–N–C Oxygen-Reduction Catalysts Supported on "Burned-Off―Activated Carbon. Journal of the Electrochemical Society, 2009, 156, B493.	1.3	13
498	Effect of annealing on nanostructured Sn30Co30C40 prepared by mechanical attrition. Journal of Alloys and Compounds, 2009, 472, 390-394.	2.8	13
499	An in situ study of protein adsorption on combinatorial Cu–Al films using spectroscopic ellipsometry. Colloids and Surfaces B: Biointerfaces, 2010, 81, 58-66.	2.5	13
500	Evaluation of the SO ₂ and NH ₃ Gas Adsorption Properties of CuO/ZnO/Mn ₃ O ₄ and CuO/ZnO/NiO Ternary Impregnated Activated Carbon Using Combinatorial Materials Science Methods. ACS Combinatorial Science, 2013, 15, 101-110.	3.8	13
501	Nanostructured Sn30Co30C40 alloys for lithium-ion battery negative electrodes prepared by horizontal roller milling. Journal of Alloys and Compounds, 2014, 595, 138-141.	2.8	13
502	High Precision Coulometry Studies of Single-Phase Layered Compositions in the Li-Mn-Ni-O System. Journal of the Electrochemical Society, 2014, 161, A1189-A1193.	1.3	13
503	The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes. Electrochimica Acta, 2015, 174, 417-423.	2.6	13
504	Highly porous MnOx prepared from Mn(C2O4)·3H2O as an adsorbent for the removal of SO2 and NH3. Microporous and Mesoporous Materials, 2017, 244, 192-198.	2.2	13

#	Article	IF	CITATIONS
505	Electrolyte Development for High-Performance Li-Ion Cells: Additives, Solvents, and Agreement with a Generalized Molecular Model. Electrochemical Society Interface, 2019, 28, 49-53.	0.3	13
506	Impact of Shell Composition, Thickness and Heating Temperature on the Performance of Nickel-Rich Cobalt-Free Core-Shell Materials. Journal of the Electrochemical Society, 2020, 167, 160556.	1.3	13
507	Impact of Al Doping and Surface Coating on the Electrochemical Performances of Li-Rich Mn-Rich Li _{1.11} Ni _{0.33} Mn _{0.56} O ₂ Positive Electrode Material. Journal of the Electrochemical Society, 2020, 167, 120531.	1.3	13
508	In Situ Imaging of Electrode Thickness Growth and Electrolyte Depletion in Single-Crystal vs Polycrystalline LiNixMnyCozO ₂ /Graphite Pouch Cells using Multi-Scale Computed Tomography. Journal of the Electrochemical Society, 2022, 169, 020501.	1.3	13
509	In Situ Study of Electrolyte Reactions in Secondary Lithium Cells. Journal of the Electrochemical Society, 1987, 134, 516-519.	1.3	12
510	SO ₂ and NH ₃ Gas Adsorption on a Ternary ZnO/CuO/CuCl ₂ Impregnated Activated Carbon Evaluated Using Combinatorial Methods. ACS Combinatorial Science, 2012, 14, 31-37.	3.8	12
511	Analysis of the cubic spinel region of the Li–Co–Mn oxide pseudo-ternary system. Solid State Ionics, 2013, 253, 234-238.	1.3	12
512	The electrochemical reaction of lithium with high-capacity dense sputtered carbon. Carbon, 2014, 74, 249-254.	5.4	12
513	The Effect of Interdiffusion on the Properties of Lithium-Rich Core-Shell Cathodes. Journal of the Electrochemical Society, 2016, 163, A2841-A2848.	1.3	12
514	The Formation of Layered Double Hydroxide Phases in the Coprecipitation Syntheses of [Ni0.80Co0.15](1â^'x)/0.95Alx(OH)2(anionnâ^')x/n (x = 0–0.2, n = 1, 2). ChemEngineering, 2019, 3, 38.	1.0	12
515	A Joint DFT and Experimental Study of an Imidazolidinone Additive in Lithium-Ion Cells. Journal of the Electrochemical Society, 2019, 166, A3707-A3715.	1.3	12
516	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 060527.	1.3	12
517	Quantifying protein adsorption on combinatorially sputtered Al-, Nb-, Ta- and Ti-containing films with electron microprobe and spectroscopic ellipsometry. Surface Science, 2009, 603, 992-1001.	0.8	11
518	Structure and Performance of Tin-Cobalt-Carbon Alloys Prepared by Attriting, Roller Milling and Sputtering. Journal of the Electrochemical Society, 2014, 161, A342-A347.	1.3	11
519	A study of small angle X-ray scattering from impregnated activated carbons. Carbon, 2014, 68, 452-461.	5.4	11
520	Dramatic Effects of Low Salt Concentrations on Li-Ion Cells Containing EC-Free Electrolytes. Journal of the Electrochemical Society, 2017, 164, A2089-A2100.	1.3	11
521	Impact of Aluminum Added to Ni-Based Positive Electrode Materials by Dry Particle Fusion. Chemistry of Materials, 2020, 32, 6097-6104.	3.2	11
522	A Study of Vinylene Carbonate and Prop-1-ene-1,3 Sultone Electrolyte Additives Using Polycrystalline Li[Ni _{0.6} Mn _{0.2} Co _{0.2}]O ₂ in Positive/Positive Symmetric Cells. Journal of the Electrochemical Society, 2020, 167, 110527.	1.3	11

#	Article	IF	CITATIONS
523	Voltage-Dependent Li Kinetics Leads to Charge-Discharge Asymmetry in Co-Free Li-Rich Li _{1.12} Ni _{0.44} Mn _{0.44} O ₂ under Conditions without Transition Metal Migration. Journal of the Electrochemical Society, 2021, 168, 090564.	1.3	11
524	Impact of Cr Doping on the Voltage Fade of Li-Rich Mn-Rich Li _{1.11} Ni _{0.33} Mn _{0.56} O ₂ and Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Positive Electrode Materials. Journal of the Electrochemical Society, 2020, 167, 160545.	1.3	11
525	Lithium Intercalation from Aqueous Solutions. Materials Research Society Symposia Proceedings, 1994, 369, 69.	0.1	10
526	Succinic Anhydride as an Enabler in Ethylene Carbonate-Free Linear Alkyl Carbonate Electrolytes for High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A1268-A1273.	1.3	10
527	Effect of Duty Cycle on the Lifetime of Single Crystal LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ /Graphite Lithium-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 130529.	1.3	10
528	Accelerated Failure in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells Due to Low LiPF ₆ Concentration and Extended Time at High Voltage. Journal of the Electrochemical Society, 2020, 167, 130541.	1.3	10
529	Tracking the Fate of Excess Li in the Synthesis of Various Liy[Ni _{1â^'x} Mn _x]O ₂ Positive Electrode Materials Under Different Atmospheres. Journal of the Electrochemical Society, 2022, 169, 030538.	1.3	10
530	Surface characteristics and protein adsorption on combinatorial binary Tiâ€M (Cr, Al, Ni) and Alâ€M (Ta,) Tj ETQo	0 0 0 rgBT 1 2.1	- /gverlock 10
531	Studies of CoSn grains in the carbon matrix structure of nanostructured tin–cobalt–carbon. Journal of Alloys and Compounds, 2012, 541, 168-172.	2.8	9
532	Small and wide angle X-ray studies of impregnated activated carbons. Carbon, 2014, 75, 420-431.	5.4	9
533	Novel nanoporous MnO (x= â^¼1.75) sorbent for the removal of SO2 and NH3 made from MnC2O4·2H2O. Journal of Colloid and Interface Science, 2016, 465, 323-332.	5.0	9
534	Two distinct Langmuir isotherms describe the adsorption of certain salts onto activated carbon over a wide concentration range. Carbon, 2006, 44, 3145-3148.	5.4	8
535	¹⁹ F and ³¹ P Solid-State NMR Characterization of a Pyridine Pentafluorophosphate-Derived Solid-Electrolyte Interphase. Journal of the Electrochemical Society, 2017, 164, A2171-A2175.	1.3	8
536	Impact of Functionalization and Co-Additives on Dioxazolone Electrolyte Additives. Journal of the Electrochemical Society, 2020, 167, 080540.	1.3	8
537	Ultrafast Insideâ€Out NMR Assessment of Rechargeable Cells. Batteries and Supercaps, 2021, 4, 322-326.	2.4	8
538	The Effect of LiFePO ₄ Particle Size and Surface Area on the Performance of LiFePO ₄ /Graphite Cells. Journal of the Electrochemical Society, 2022, 169, 050524.	1.3	8
539	A high throughput method using electron microprobe analysis for quantification of protein adsorption on surfaces. Surface Science, 2008, 602, 795-804.	0.8	7
540	A Mössbauer effect study of combinatorially prepared Al2O3/Fe and LiF/Fe multilayers. Journal of Physics Condensed Matter, 2008, 20, 055203.	0.7	7

#	Article	IF	CITATIONS
541	A combinatorial approach to screening carbon based materials for respiratory protection. Journal of Hazardous Materials, 2010, 183, 677-687.	6.5	7
542	Can Zr be Substituted for Co in Co[sub 1â^'z]Zr[sub z](OH)[sub 2] and LiCo[sub 1â^'z]Zr[sub z]O[sub 2]?. Journal of the Electrochemical Society, 2011, 158, A110.	1.3	7
543	A New Design for a Combinatorial Electrochemical Cell Plate and the Inherent Irreversible Capacity of Lithiated Silicon. Electrochemical and Solid-State Letters, 2011, 14, A42.	2.2	7
544	Studies of Si-Fe-C Electrode Materials Prepared by Combinatorial Sputter Deposition. Journal of the Electrochemical Society, 2017, 164, A498-A507.	1.3	7
545	Correlating the mechanical strength of positive electrode material particles to their capacity retention. Cell Reports Physical Science, 2022, 3, 100714.	2.8	7
546	The Impact of Upper Cut-Off Voltage on the Cycling Performance of Li-Ion Cells with Positive Electrodes Having Various Nickel Contents. Journal of the Electrochemical Society, 2022, 169, 040531.	1.3	7
547	Thermal runaway prediction for impregnated activated carbons from isothermal DSC measurements. Carbon, 2003, 41, 903-913.	5.4	6
548	Natural variability in the surface roughness of combinatorial libraries of materials. Applied Surface Science, 2007, 253, 5943-5946.	3.1	6
549	Assessing the Pt[sub upd] Surface Area Stability of Pt[sub 1â^'x]M[sub x] (M=Re, Nb, Bi) Solid Solutions for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B737.	1.3	6
550	Room temperature crystallization kinetics of amorphous Cu6Sn5+C alloys. Journal of Alloys and Compounds, 2011, 509, 6705-6710.	2.8	6
551	The Effect of Ru or Ir Addition on Nano-Structured-Thin-Film Supported Pt Fuel Cell Catalysts under Rotating Disk Electrode Simulated Start-up Shut-down. Journal of the Electrochemical Society, 2014, 161, F961-F968.	1.3	6
552	Role of CuO in improving NH3 and SO2 capture on nanoporous Fe2O3 sorbents. Journal of Colloid and Interface Science, 2018, 521, 206-215.	5.0	6
553	Screening Bifunctional Pt Based NSTF Catalysts for Durability with the Rotating Disk Electrode: The Effect of Ir and Ru. Journal of the Electrochemical Society, 2018, 165, F854-F862.	1.3	6
554	Using Lithium-ion Differential Thermal Analysis to Probe Tortuosity of Negative Electrodes in Lithium-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 020501.	1.3	6
555	Sn-based roughness gradients for high-throughput screening. Thin Solid Films, 2008, 516, 7361-7365.	0.8	5
556	A Comparative Study of Pyridine Containing Lewis Acid-Base Adducts as Additives for Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A2124-A2130.	1.3	5
557	Impact of Electrolyte Additive Content on the Lifetime of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ /Artificial and Natural Graphite Cells. Journal of the Electrochemical Society, 2017, 164, A2756-A2766.	1.3	5
558	An Evaluation of a Systematic Series of Cobalt-Free Ni-Rich Core-Shell Materials as Positive Electrode Materials for Li-Ion Batteries, Journal of the Electrochemical Society, 2021, 168, 090555	1.3	5

#	Article	IF	CITATIONS
559	Measuring Parasitic Heat Flow in LiFePO ₄ /Graphite Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 120526.	1.3	5
560	Designing Positive/Positive and Negative/Negative Symmetric Cells with Electrodes Operating in the Same Potential Ranges as Electrodes in a Full Li-Ion Cell. Journal of the Electrochemical Society, 2021, 168, 080537.	1.3	4
561	A Baseline Kinetic Study of Co-Free Layered Li _{1+x} (Ni _{0.5} Mn _{0.5}) _{1â^'x} O ₂ Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 110502.	1.3	4
562	Impact of moisture on the thermal behavior of K2CO3-impregnated respirator carbons. Carbon, 2003, 41, 1695-1705.	5.4	3
563	Simulations of isothermal oven tests of impregnated activated carbons in cylindrical and cubic sample holders. Carbon, 2004, 42, 2385-2392.	5.4	3
564	MnO ₂ /Fe ₂ O ₃ Nanocomposite Sorbent for Gas Capture. ACS Applied Nano Materials, 2018, 1, 6674-6682.	2.4	3
565	Synthesis and Evaluation of Difluorophosphate Salt Electrolyte Additives for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 100538.	1.3	3
566	Use of carbon black to eliminate surface charging effects in photoelectron spectroscopy measurements of powders. Applied Physics Letters, 1997, 71, 2262-2264.	1.5	2
567	Thermal Stability of Lithium Ion Battery Electrode Materials in Organic Electrolytes. Materials Research Society Symposia Proceedings, 1997, 496, 445.	0.1	2
568	Application of the "confusion principle―to Sn-based materials as negative electrode materials for Li-ion batteries. Canadian Journal of Physics, 2010, 88, 131-135.	0.4	2
569	A one-pot method for the synthesis of 3-(hetero-)aryl-1,4,2-dioxazol-5-ones. Canadian Journal of Chemistry, 2020, 98, 158-163.	0.6	2
570	Li[Ni0.5Mn0.3Co0.2]O2 As a Superior Alternative to LiFePO4 for Long-Lived Low Voltage Li-Ion Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1893-1893.	0.0	2
571	The 3-phenyl-1,4,2-dioxazol-5-one (PDO) Electrolyte Additive for Li(Ni _{0.6} Mn _{0.2} Co _{0.2})O ₂ and Li(Ni _{0.8} Mn _{0.1} Co _{0.1})O ₂ Lithium-Ion Cells. Journal of the Electrochemical Society. 2022. 169. 040565.	1.3	2
572	Lessons Learned from Long-Term Cycling Experiments with Pouch Cells with Li-Rich and Mn-Rich Positive Electrode Materials. Journal of the Electrochemical Society, 2022, 169, 060530.	1.3	2
573	Adding structural diversity to roughness gradients formed from Sn. Thin Solid Films, 2008, 516, 8537-8542.	0.8	1
574	User-Friendly Freeware for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells Using Fourier Transform Infrared Spectroscopy, Beer's Law, and Machine Learning. Journal of the Electrochemical Society, 2019, 166, A3102-A3108.	1.3	1
575	KOH Based Method for the Determination of Oxygen Content in Ball Milled SiOx Material. Journal of the Electrochemical Society, 2021, 168, 010515.	1.3	1
576	Increasing Stack Energy Density Without Lifetime Penalty by Increasing Electrode Loading in Single Crystal Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. Journal of the Electrochemical Society, 2021, 168, 100545.	1.3	1

#	Article	IF	CITATIONS
577	Using Varied Salt Concentration and High Charging Potential to Study "Rollover―Failure Mechanisms in Li-Ion Cells. ECS Meeting Abstracts, 2019, , .	0.0	1
578	Impact of Dry Particle Fusion Coating of Tungsten Oxide on Ni-Based Positive Electrode Materials for Li-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 369-369.	0.0	1
579	(Invited) The Life and Death of Anode-Free Lithium Metal Cells. ECS Meeting Abstracts, 2020, MA2020-02, 32-32.	0.0	1
580	Impact of Al Substitution on the Thermal Stability of Li[Ni1/3 Mn1/3Co(1/3-z)Alz]O2. ECS Meeting Abstracts, 2008, , .	0.0	0
581	Probing the Effect of the Depth of Discharge Range and C-Rate on the Lifetime of Li-Ion Cells at Different Temperature. ECS Meeting Abstracts, 2019, , .	0.0	0
582	The Effect of Functional Groups and Co-Additives on the Performance of an Electrolyte Additive for Li-Ion Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
583	Using Scanning Micro X-Ray Fluorescence (µXRF) to Visualize, Understand and Quantify Transition Metal Dissolution in Li-Ion Cells. ECS Meeting Abstracts, 2020, MA2020-02, 666-666.	0.0	0
584	Cobalt-Free Core-Shell Structure with High Capacity and Long Cycle Life As an Alternative to NMC811. ECS Meeting Abstracts, 2020, MA2020-02, 112-112.	0.0	0
585	Designing +/+ and -/- Symmetric Cells with Matching Full Cell Voltage As a Method to Simplify the Study of Cell Degradation. ECS Meeting Abstracts, 2020, MA2020-02, 669-669.	0.0	0
586	Is Aluminum Useful in Ni-Rich Li-Ni-Mn-O Positive Electrode Materials for Lithium-Ion Batteries?. ECS Meeting Abstracts, 2021, MA2021-02, 351-351.	0.0	0
587	Investigation of Redox Shuttle Generation in LiFePO ₄ /Graphite and NMC811/Graphite Cells for Different Additives and Conducting Salts. ECS Meeting Abstracts, 2022, MA2022-01, 200-200.	0.0	0
588	High Nickel Positive Electrode Materials Modified By Dry Particle Fusion. ECS Meeting Abstracts, 2022, MA2022-01, 220-220.	0.0	0