Cristina Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744406/publications.pdf

Version: 2024-02-01

28 papers 3,030 citations

394421 19 h-index 29 g-index

29 all docs 29 docs citations

times ranked

29

3053 citing authors

#	Article	IF	CITATIONS
1	Genome editing for resistance against plant pests and pathogens. Transgenic Research, 2021, 30, 427-459.	2.4	20
2	The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions. MBio, 2021, , e0198121.	4.1	3
3	Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation. Journal of Biological Chemistry, 2020, 295, 1439-1451.	3.4	25
4	Inorganic polyphosphate in mammals: where's Wally?. Biochemical Society Transactions, 2020, 48, 95-101.	3.4	38
5	Microbial inositol polyphosphate metabolic pathway as drug development target. Advances in Biological Regulation, 2018, 67, 74-83.	2.3	25
6	Rab4A organizes endosomal domains for sorting cargo to lysosome–related organelles. Journal of Cell Science, 2018, 131, .	2.0	18
7	Screening a Protein Array with Synthetic Biotinylated Inorganic Polyphosphate To Define the Human PolyP-ome. ACS Chemical Biology, 2018, 13, 1958-1963.	3.4	49
8	Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective. Trends in Biochemical Sciences, 2017, 42, 219-231.	7.5	120
9	The new world of inorganic polyphosphates. Biochemical Society Transactions, 2016, 44, 13-17.	3.4	16
10	Phosphate, inositol and polyphosphates. Biochemical Society Transactions, 2016, 44, 253-259.	3.4	39
11	Why always lysine? The ongoing tale of one of the most modified amino acids. Advances in Biological Regulation, 2016, 60, 144-150.	2.3	67
12	VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP ₈ and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.	6.6	153
13	Protein Polyphosphorylation of Lysine Residues by Inorganic Polyphosphate. Molecular Cell, 2015, 58, 71-82.	9.7	131
14	Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochemical Society Transactions, 2014, 42, 98-102.	3.4	36
15	Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18970-18975.	7.1	57
16	Influence of Inositol Pyrophosphates on Cellular Energy Dynamics. Science, 2011, 334, 802-805.	12.6	206
17	The signaling role of inositol hexakisphosphate kinases (IP6Ks). Advances in Enzyme Regulation, 2011, 51, 74-82.	2.6	20
18	Preparation of Quality Inositol Pyrophosphates. Journal of Visualized Experiments, 2011, , e3027.	0.3	19

#	Article	IF	CITATION
19	Identification of an Evolutionarily Conserved Family of Inorganic Polyphosphate Endopolyphosphatases. Journal of Biological Chemistry, 2011, 286, 31966-31974.	3.4	196
20	Reply to Shears: As knowledge of inositol pyrophosphates advances, wonder recedes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 , .	7.1	1
21	Synthesis of InsP 7 by the Inositol Hexakisphosphate Kinase 1 (IP6K1). Methods in Molecular Biology, 2010, 645, 73-85.	0.9	18
22	Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21161-21166.	7.1	127
23	Extraction and analysis of soluble inositol polyphosphates from yeast. Nature Protocols, 2006, 1, 2416-2422.	12.0	107
24	Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal, 2006, 25, 2007-2016.	7.8	226
25	Inositol pyrophosphates: metabolism and signaling. Cellular and Molecular Life Sciences, 2006, 63, 552-564.	5.4	163
26	The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science, 2002, 295, 2073-2076.	12.6	574
27	The U-box protein family in plants. Trends in Plant Science, 2001, 6, 354-358.	8.8	234
28	A Novel Class of Eukaryotic Zinc-Binding Proteins Is Required for Disease Resistance Signaling in Barley and Development in C. elegans. Cell, 1999, 99, 355-366.	28.9	341