
Berta Alsina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyphosphate degradation by Nudt3-Zn2+ mediates oxidative stress response. Cell Reports, 2021, 37, 110004.	6.4	18
2	Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Reports, 2020, 32, 107903.	6.4	20
3	Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Current Opinion in Cell Biology, 2020, 67, 79-85.	5.4	8
4	Anatomical map of the cranial vasculature and sensory ganglia. Journal of Anatomy, 2018, 232, 431-439.	1.5	7
5	Sculpting the labyrinth: Morphogenesis of the developing inner ear. Seminars in Cell and Developmental Biology, 2017, 65, 47-59.	5.0	55
6	Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. ELife, 2017, 6, .	6.0	11
7	Morphogenetic Mechanisms of Inner Ear Development. , 2016, , 235-258.		0
8	Mitotic cell rounding and epithelial thinning regulate lumen growth and shape. Nature Communications, 2015, 6, 7355.	12.8	71
9	Cavity morphogenesis: imaging mitotic forces in action. Cell Cycle, 2015, 14, 2867-2868.	2.6	0
10	LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation. Molecular Cell, 2015, 58, 755-766.	9.7	41
11	Retinoic Acid Signaling Mediates Hair Cell Regeneration by Repressing <i>p27</i> kip and <i>sox2</i> in Supporting Cells. Journal of Neuroscience, 2015, 35, 15752-15766.	3.6	22
12	The Role of her4 in Inner Ear Development and Its Relationship with Proneural Genes and Notch Signalling. PLoS ONE, 2014, 9, e109860.	2.5	12
13	Sensational placodes: Neurogenesis in the otic and olfactory systems. Developmental Biology, 2014, 389, 50-67.	2.0	56
14	<i>β amyloid protein precursor-like</i> (<i>Appl</i>) is a Ras1/MAPK-regulated gene required for axonal targeting in <i>Drosophila</i> photoreceptor neurons. Journal of Cell Science, 2013, 126, 53-59.	2.0	27
15	Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development (Cambridge), 2011, 138, 397-408.	2.5	53
16	Multiple enhancers located in a 1-Mb region upstream of POU3F4 promote expression during inner ear development and may be required for hearing. Human Genetics, 2010, 128, 411-419.	3.8	35
17	Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Developmental Biology, 2010, 339, 166-178.	2.0	79
18	Characterization of New Otic Enhancers of the Pou3f4 Gene Reveal Distinct Signaling Pathway Regulation and Spatio-Temporal Patterns. PLoS ONE, 2010, 5, e15907.	2.5	12

BERTA ALSINA

#	Article	IF	CITATIONS
19	Patterning and cell fate in ear development. International Journal of Developmental Biology, 2009, 53, 1503-1513.	0.6	52
20	Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Developmental Biology, 2008, 322, 109-120.	2.0	82
21	Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mechanisms of Development, 2007, 124, 631-645.	1.7	70
22	Establishment of a proneural field in the inner ear. International Journal of Developmental Biology, 2007, 51, 483-493.	0.6	35
23	Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. Journal of Comparative Neurology, 2007, 503, 487-500.	1.6	96
24	BMP-signaling regulates the generation of hair-cells. Developmental Biology, 2006, 292, 55-67.	2.0	90
25	vHnf1regulates specification of caudal rhombomere identity in the chick hindbrain. Developmental Dynamics, 2005, 234, 567-576.	1.8	30
26	FGF signaling is required for determination of otic neuroblasts in the chick embryo. Developmental Biology, 2004, 267, 119-134.	2.0	111
27	Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons. Developmental Biology, 2003, 262, 242-253.	2.0	63
28	Growth Factors and Early Development of Otic Neurons: Interactions between Intrinsic and Extrinsic Signals. Current Topics in Developmental Biology, 2003, 57, 177-206.	2.2	26
29	The <i>Drosophilaselenophosphate synthetase (selD)</i> gene is required for development and cell proliferation. BioFactors, 2001, 14, 143-149.	5.4	15
30	Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nature Neuroscience, 2001, 4, 1093-1101.	14.8	336