
Marcus Baumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein Journal of Organic Chemistry, 2013, 9, 2265-2319.	1.3	642
2	An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein Journal of Organic Chemistry, 2011, 7, 442-495.	1.3	451
3	The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein Journal of Organic Chemistry, 2015, 11, 1194-1219.	1.3	296
4	A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Organic Process Research and Development, 2020, 24, 1802-1813.	1.3	290
5	KMnO ₄ -Mediated Oxidation as a Continuous Flow Process. Organic Letters, 2010, 12, 3618-3621.	2.4	196
6	The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Molecular Diversity, 2011, 15, 613-630.	2.1	147
7	Development of fluorination methods using continuous-flow microreactors. Tetrahedron, 2009, 65, 6611-6625.	1.0	140
8	Fully Automated Continuous Flow Synthesis of 4,5-Disubstituted Oxazoles. Organic Letters, 2006, 8, 5231-5234.	2.4	120
9	A modular flow reactor for performing Curtius rearrangements as a continuous flow process. Organic and Biomolecular Chemistry, 2008, 6, 1577.	1.5	120
10	Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions. Organic and Biomolecular Chemistry, 2008, 6, 1587.	1.5	115
11	A New Enabling Technology for Convenient Laboratory Scale Continuous Flow Processing at Low Temperatures. Organic Letters, 2011, 13, 3312-3315.	2.4	109
12	Scalability of photochemical reactions in continuous flow mode. Journal of Flow Chemistry, 2021, 11, 223-241.	1.2	80
13	Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 2020, 25, 356.	1.7	72
14	Tagged phosphine reagents to assist reaction work-up by phase-switched scavenging using a modular flow reactor. Organic and Biomolecular Chemistry, 2007, 5, 1562.	1.5	56
15	Continuous photochemistry: the flow synthesis of ibuprofen via a photo-Favorskii rearrangement. Reaction Chemistry and Engineering, 2016, 1, 147-150.	1.9	53
16	Batch and Flow Synthesis of Pyrrolo[1,2-a]-quinolines via an Allene-Based Reaction Cascade. Journal of Organic Chemistry, 2015, 80, 10806-10816.	1.7	43
17	Synthesis of a Drug-Like Focused Library of Trisubstituted Pyrrolidines Using Integrated Flow Chemistry and Batch Methods. ACS Combinatorial Science, 2011, 13, 405-413.	3.8	42
18	Multiple Microcapillary Reactor for Organic Synthesis. Industrial & Engineering Chemistry Research, 2010, 49, 4576-4582.	1.8	39

MARCUS BAUMANN

#	Article	IF	CITATIONS
19	Integrating continuous flow synthesis with in-line analysis and data generation. Organic and Biomolecular Chemistry, 2018, 16, 5946-5954.	1.5	34
20	Continuous-Flow Synthesis of 2H-Azirines and Their Diastereoselective Transformation to Aziridines. Synlett, 2015, 27, 159-163.	1.0	33
21	Boehmeriasin A as new lead compound for the inhibition of topoisomerases and SIRT2. European Journal of Medicinal Chemistry, 2015, 92, 766-775.	2.6	32
22	Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic and Biomolecular Chemistry, 2021, 19, 7737-7753.	1.5	32
23	Tricyclic analogues of epidithiodioxopiperazine alkaloids with promising in vitro and in vivo antitumor activity. Chemical Science, 2015, 6, 4451-4457.	3.7	30
24	Overcoming the Hurdles and Challenges Associated with Developing Continuous Industrial Processes. European Journal of Organic Chemistry, 2020, 2020, 7398-7406.	1.2	29
25	Exploring Flow Procedures for Diazonium Formation. Molecules, 2016, 21, 918.	1.7	27
26	Synthesis of Riboflavines, Quinoxalinones and Benzodiazepines through Chemoselective Flow Based Hydrogenations. Molecules, 2014, 19, 9736-9759.	1.7	26
27	The rapid generation of isothiocyanates in flow. Beilstein Journal of Organic Chemistry, 2013, 9, 1613-1619.	1.3	25
28	Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c]pyrimidines. Organic and Biomolecular Chemistry, 2015, 13, 4231-4239.	1.5	24
29	The Use of Diethylaminosulfur Trifluoride (DAST) for Fluorination in a Continuous-Flow Microreactor. Synlett, 2008, 2008, 2111-2114.	1.0	23
30	Continuous Flow Synthesis of Quinolines via a Scalable Tandem Photoisomerization yclization Process. European Journal of Organic Chemistry, 2020, 2020, 6199-6211.	1.2	23
31	Flowâ€Assisted Synthesis: A Key Fragment of SR 142948A. European Journal of Organic Chemistry, 2017, 2017, 6540-6553.	1.2	22
32	A continuous flow synthesis of [1.1.1]propellane and bicyclo[1.1.1]pentane derivatives. Chemical Communications, 2021, 57, 2871-2874.	2.2	22
33	Synthesis of (-)-Hennoxazole A: Integrating Batch and Flow Chemistry Methods. Synlett, 2013, 24, 514-518.	1.0	20
34	Synthesis of Highly Substituted Nitropyrrolidines, Nitropyrrolizines and Nitropyrroles via Multicomponent-Multistep Sequences within a Flow Reactor. Heterocycles, 2010, 82, 1297.	0.4	18
35	Synthesis of 1,3,6-Trisubstituted Azulenes. Journal of Organic Chemistry, 2015, 80, 11513-11520.	1.7	17
36	A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic. Beilstein Journal of Organic Chemistry, 2017, 13, 2549-2560.	1.3	17

Marcus Baumann

#	Article	IF	CITATIONS
37	Sustainable Synthesis of Thioimidazoles via Carbohydrate-Based Multicomponent Reactions. Organic Letters, 2014, 16, 6076-6079.	2.4	16
38	Evaluating the Green Credentials of Flow Chemistry towards Industrial Applications. Synthesis, 2021, 53, 3963-3976.	1.2	16
39	A scalable continuous photochemical process for the generation of aminopropylsulfones. Organic and Biomolecular Chemistry, 2020, 18, 9428-9432.	1.5	15
40	Development of a Continuous Flow Photoisomerization Reaction Converting Isoxazoles into Diverse Oxazole Products. Journal of Organic Chemistry, 2020, 85, 2607-2617.	1.7	15
41	Integrating reactive distillation with continuous flow processing. Reaction Chemistry and Engineering, 2019, 4, 368-371.	1.9	13
42	Protein domain-based prediction of drug/compound–target interactions and experimental validation on LIM kinases. PLoS Computational Biology, 2021, 17, e1009171.	1.5	13
43	A continuous flow synthesis and derivatization of 1,2,4-thiadiazoles. Bioorganic and Medicinal Chemistry, 2017, 25, 6218-6223.	1.4	12
44	Development of a Continuous Photochemical Benzyne-Forming Process. SynOpen, 2021, 05, 29-35.	0.8	12
45	Discovery of a photochemical cascade process by flow-based interception of isomerising alkenes. Chemical Science, 2021, 12, 9895-9901.	3.7	12
46	Synthesis of 3-Nitropyrrolidines via Dipolar Cycloaddition Reactions Using a Modular Flow Reactor. Synlett, 2010, 2010, 749-752.	1.0	11
47	An Integrated Flow and Batch-Based Approach for the Synthesis of O-Methyl Siphonazole. Synlett, 2011, 2011, 1375-1380.	1.0	11
48	Solvent Engineering Substantially Enhances the Chemoenzymatic Production of Surfactin. ChemBioChem, 2006, 7, 595-597.	1.3	10
49	Sustainable Flow Synthesis of a Versatile Cyclopentenone Building Block. Organic Process Research and Development, 2017, 21, 2052-2059.	1.3	10
50	Tandem Continuous Flow Curtius Rearrangement and Subsequent Enzyme-Mediated Impurity Tagging. Organic Process Research and Development, 2021, 25, 452-456.	1.3	9
51	Interrupted Curtius Rearrangements of Quaternary Proline Derivatives: A Flow Route to Acyclic Ketones and Unsaturated Pyrrolidines. Journal of Organic Chemistry, 2021, 86, 14199-14206.	1.7	9
52	Continuous flow synthesis and antimicrobial evaluation of NHC* silver carboxylate derivatives of SBC3 <i>in vitro</i> and <i>in vivo</i> . Metallomics, 2021, 13, .	1.0	9
53	A Continuousâ€Flow Method for the Desulfurization of Substituted Thioimidazoles Applied to the Synthesis of Etomidate Derivatives. European Journal of Organic Chemistry, 2017, 2017, 6518-6524.	1.2	7
54	Synthesis of new derivatives of boehmeriasin A and their biological evaluation in liver cancer. European Journal of Medicinal Chemistry, 2019, 166, 243-255.	2.6	7

Marcus Baumann

#	Article	IF	CITATIONS
55	Continuous Flow Technology as an Enabler for Innovative Transformations Exploiting Carbenes, Nitrenes, and Benzynes. Journal of Organic Chemistry, 2022, 87, 8279-8288.	1.7	7
56	Scale-Up of Flow-Assisted Synthesis of C2-Symmetric Chiral PyBox Ligands. Synthesis, 2012, 2012, 635-647.	1.2	6
57	Diastereoselective Trifluoroacetylation of Highly Substituted Pyrrolidines by a Dakinâ~'West Process. Journal of Organic Chemistry, 2016, 81, 11898-11908.	1.7	6
58	Synthesis of Bioderived Cinnolines and Their Flow-Based Conversion into 1,4-Dihydrocinnoline Derivatives. Synlett, 2020, 31, 487-491.	1.0	5
59	Flow Chemistry – Fundamentals. , 2021, , .		5
60	Synthesis of 2H-indazoles via the Cadogan reaction in batch and flow mode. Tetrahedron Letters, 2021, 86, 153522.	0.7	5
61	Continuous Flow Synthesis of Anticancer Drugs. Molecules, 2021, 26, 6992.	1.7	5
62	Diastereoselective Synthesis and Diversification of Highly Functionalized Cyclopentanones. Synthesis, 2018, 50, 753-759.	1.2	4
63	Development of a Telescoped Flow Process for the Safe and Effective Generation of Propargylic Amines. Molecules, 2019, 24, 3658.	1.7	4
64	Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives. Beilstein Journal of Organic Chemistry, 2021, 17, 379-384.	1.3	4
65	Functional Group Interconversion Reactions in Continuous Flow Reactors. Current Organic Chemistry, 2021, 25, .	0.9	3
66	Unprecedented Alkene Transposition in Phthalate–Amino Acid Adducts. Synlett, 2018, 29, 2648-2654.	1.0	2
67	Synthesis and biological evaluation of fluoro-substituted cationic and neutral antibiotic NHC* silver derivatives of SBC3. Journal of Organometallic Chemistry, 2022, 976, 122436.	0.8	2
68	Syn-Ethyl 1-hydroxy-7-methoxy-2,3-dihydro-1H-pyrrolo[3,4-b]quinolone-3-carboxylate HCl Salt. MolBank, 2015, 2015, M846.	0.2	1
69	Rac-2′,3a,6,6,6′,6′-Hexamethyl-3a,3b,6,7-tetra-hydrospiro-[benzo[2,3]cyclopropa[1,2-c]pyrazole-1,1′ MolBank, 2017, 2017, M948.	-cyclo-hej 0.2	pta[2,4]dier@
70	Flow Chemistry Approaches Applied to the Synthesis of Saturated Heterocycles. Topics in Heterocyclic Chemistry, 2018, , 187-236.	0.2	1
71	Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography. Beilstein Journal of Organic Chemistry, 2022, 18, 232-239.	1.3	1
72	Ethyl 5-(4-Bromophenyl)-4-methyl-1H-pyrrole-2-carboxylate. MolBank, 2017, 2017, M951.	0.2	0