Ruixi Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744086/publications.pdf Version: 2024-02-01

Ριμγι Ελν

1 Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chemical Science, 2021, 12, 6569-6579. 3.7 2 Effects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817. 6.6 3 Sccsup>3+ Sccsup>3+ 6.6 3 Fects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817. 6.6 3 Sccsup>3+ Sccsup>>Promoted O–O Bond Cleavage of a (İl4-1,2-Peroxo)diiron(III) Species Formed from an Foro(II) Precursor and O _{2 6.6 4 Spectroscopic Description of the E_{1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and MŶssbauer Studies. Inorganic Chemistry, 2019, 58, 12365-12376. 1.9 5 Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091. 6.6 6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 7 NMR Reveals That a Highly Reactive Nonheme Fe ^{IV}=O Complex Retains Its Sixâ€Coordinate 17}}	2 53 22
 2 Effects of Noncovalent Interactions on High-Spin Fe(IV)à€"Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817. 3 Sc³⁺-Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O₂ to Cenerate a Complex with an Fe^{IV} 4 Spectroscopic Description of the E₁ State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and M¶ssbauer Studies. Inorganic Chemistry, 2019, 58, 12365-12376. 5 Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091. 6.6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FelV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 NMR Reveals That a Highly Reactive Nonheme Fe^{IV}=O Complex Retains Its Sixâ€Coordinate 1.7 	53 22
Sc ³⁺ -Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O ₂ to Generate a Complex with an Fe ^{IV} ₂ (I¼-O) ₂ Core. Journal of the American Chemical Society, 2020, 142, 4285-4297. 6.6 Spectroscopic Description of the E ₁ State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorganic Chemistry, 2019, 58, 12365-12376. 1.9 Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091. 6.6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate 1.7	22
4 Spectroscopic Description of the E ₁ State of Mo Nitrogenase Based on Mo and Fe X-ray 1.9 5 Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species 6.6 6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 7 NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate 1.7	
5 Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091. 6.6 6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 7 NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate Commetry and dis Schutian Chemistry. A European Journal 2010, 25, 0608,0613 1.7	38
6 Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545. 1.1 7 NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate 1.7	48
NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate	8
Geometry and <1>5 1 =1 State in Solution. Chemistry - A European Journal, 2019, 25, 9606-9615.	10
8 Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor. Journal of the American Chemical 6.6 Society, 2019, 141, 8684-8688.	45
 Repurposing Nonheme Iron Hydroxylases To Enable Catalytic Nitrile Installation through an Azido Group Assistance. Journal of the American Chemical Society, 2019, 141, 3419-3423. 	13
10Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe ^V –Oxo6.6Intermediate. Journal of the American Chemical Society, 2018, 140, 3916-3928.6.6	86
11 Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that 7.2 Makes it a Better Oxidant. Angewandte Chemie - International Edition, 2018, 57, 9387-9391.	53
12Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angewandte Chemie, 2018, 130, 9531-9535.1.6	16
The Two Faces of Tetramethylcyclam in Iron Chemistry: Distinct Fe–O–M Complexes Derived from 13 [Fe ^{IV} (O _{<i>anti</i>/i>syn})(TMC)] ²⁺ Isomers. Inorganic 1.9 Chemistry, 2017, 56, 518-527.	14
14Cmll <i>N</i> Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without1.214Dissociation of Intermediates. Biochemistry, 2017, 56, 4940-4950.1.2	21
15Characterization of the Fleeting Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand.1.915Inorganic Chemistry, 2017, 56, 11129-11140.1.9	25
Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme Cmll. Journal of the American Chemical Society, 2016, 138, 7411-7421.	37
Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)–Halide Complexes That Halogenate C–H Bonds. Journal of the American Chemical Society, 2016, 138, 2484-2487. 6.6	80