Ruixi Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744086/publications.pdf Version: 2024-02-01

<u>Ριμγι Ελ</u>

#	Article	IF	CITATIONS
1	Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe ^V –Oxo Intermediate. Journal of the American Chemical Society, 2018, 140, 3916-3928.	6.6	86
2	Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)–Halide Complexes That Halogenate C–H Bonds. Journal of the American Chemical Society, 2016, 138, 2484-2487.	6.6	80
3	Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angewandte Chemie - International Edition, 2018, 57, 9387-9391.	7.2	53
4	Effects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817.	6.6	53
5	Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091.	6.6	48
6	Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor. Journal of the American Chemical Society, 2019, 141, 8684-8688.	6.6	45
7	Spectroscopic Description of the E ₁ State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and MA¶ssbauer Studies. Inorganic Chemistry, 2019, 58, 12365-12376.	1.9	38
8	Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme Cmll. Journal of the American Chemical Society, 2016, 138, 7411-7421.	6.6	37
9	Characterization of the Fleeting Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand. Inorganic Chemistry, 2017, 56, 11129-11140.	1.9	25
10	Sc ³⁺ -Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O ₂ to Generate a Complex with an Fe ^{IV} ₂ (μ-O) ₂ Core. Journal of the American Chemical Society, 2020, 142, 4285-4297.	6.6	22
11	Cmll <i>N</i> -Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates. Biochemistry, 2017, 56, 4940-4950.	1.2	21
12	Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Nonâ€Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angewandte Chemie, 2018, 130, 9531-9535.	1.6	16
13	The Two Faces of Tetramethylcyclam in Iron Chemistry: Distinct Fe–O–M Complexes Derived from [Fe ^{IV} (O _{<i>anti</i>/<i>syn</i>})(TMC)] ²⁺ Isomers. Inorganic Chemistry, 2017, 56, 518-527.	1.9	14
14	Repurposing Nonheme Iron Hydroxylases To Enable Catalytic Nitrile Installation through an Azido Group Assistance. Journal of the American Chemical Society, 2019, 141, 3419-3423.	6.6	13
15	NMR Reveals That a Highly Reactive Nonheme Fe ^{IV} =O Complex Retains Its Sixâ€Coordinate Geometry and <i>S</i> =1 State in Solution. Chemistry - A European Journal, 2019, 25, 9608-9613.	1.7	10
16	Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes. Journal of Biological Inorganic Chemistry, 2019, 24, 533-545.	1.1	8
17	Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chemical Science, 2021, 12, 6569-6579.	3.7	2