
Yuri Suchorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nature Materials, 2018, 17, 519-522.	27.5	136
2	Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study. Ultramicroscopy, 2015, 159, 147-151.	1.9	99
3	Local Catalytic Ignition during CO Oxidation on Lowâ€Index Pt and Pd Surfaces: A Combined PEEM, MS, and DFT Study. Angewandte Chemie - International Edition, 2012, 51, 10041-10044.	13.8	85
4	CO Oxidation on a CeO _{<i>x</i>} /Pt(111) Inverse Model Catalyst Surface: Catalytic Promotion and Tuning of Kinetic Phase Diagrams. Journal of Physical Chemistry C, 2008, 112, 20012-20017.	3.1	79
5	Cerium oxide layers on the Cu(111) surface: Substrate-mediated redox properties. Surface Science, 2008, 602, 436-442.	1.9	38
6	Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil. Surface Science, 2011, 605, 1999-2005.	1.9	36
7	Ordered phases in alkali redistribution during a catalytic surface reaction. Physical Chemistry Chemical Physics, 2003, 5, 2730-2735.	2.8	32
8	Visualizing catalyst heterogeneity by a Âmultifrequential oscillating reaction. Nature Communications, 2018, 9, 600.	12.8	31
9	Local Reaction Kinetics by Imaging: CO Oxidation on Polycrystalline Platinum. ChemPhysChem, 2010, 11, 3231-3235.	2.1	29
10	The Role of Defects in the Local Reaction Kinetics of CO Oxidation on Low-Index Pd Surfaces. Journal of Physical Chemistry C, 2013, 117, 12054-12060.	3.1	28
11	Catalytic reactions on platinum nanofacets: bridging the size and complexity gap. Topics in Catalysis, 2007, 46, 201-215.	2.8	26
12	Local reaction kinetics by imaging. Surface Science, 2016, 643, 52-58.	1.9	26
13	Catalytic CO Oxidation on Individual (110) Domains of a Polycrystalline Pt Foil: Local Reaction Kinetics by PEEM. Catalysis Letters, 2011, 141, 625-632.	2.6	23
14	Heterogeneous Surfaces as Structure and Particle Size Libraries of Model Catalysts. Catalysis Letters, 2018, 148, 2947-2956.	2.6	22
15	Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis. Science, 2021, 372, 1314-1318.	12.6	22
16	Hydrogen Oxidation on Stepped Rh Surfaces: µm-Scale versus Nanoscale. Catalysis Letters, 2016, 146, 1867-1874.	2.6	18
17	Surface-Structure Libraries: Multifrequential Oscillations in Catalytic Hydrogen Oxidation on Rhodium. Journal of Physical Chemistry C, 2019, 123, 4217-4227.	3.1	18
18	Lifted reconstruction as a feedback mechanism in the oscillating CO oxidation on Pt nanofacets: Microscopic evidences. Surface Science. 2006. 600. 1579-1585.	1.9	17

Yuri Suchorski

#	Article	IF	CITATIONS
19	Spatial Desynchronization of Glycolytic Waves as Revealed by Karhunenâ^Loève Analysis. Journal of Physical Chemistry B, 2008, 112, 14334-14341.	2.6	17
20	How the anisotropy of surface oxide formation influences the transient activity of a surface reaction. Nature Communications, 2021, 12, 69.	12.8	17
21	Surface diffusion by adsorbate density fluctuation measurements. Progress in Surface Science, 2003, 74, 3-24.	8.3	14
22	CO Oxidation on Stepped Rh Surfaces: μm-Scale Versus Nanoscale. Catalysis Letters, 2020, 150, 605-612.	2.6	14
23	High-quality ZrO2/Si(001) thin films by a sol-gel process: Preparation and characterization. Journal of Applied Physics, 2010, 107, 094103.	2.5	13
24	Silicon Oxide Surface Segregation in CO Oxidation on Pd: An in situ PEEM, MS and XPS Study. Catalysis Letters, 2013, 143, 235-240.	2.6	13
25	Metastable impact electron emission microscopy of the catalytic H2 oxidation on Rh(). Surface Science, 2003, 532-535, 132-136.	1.9	10
26	Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale. Ultramicroscopy, 2015, 159, 178-183.	1.9	10
27	Single-Particle Catalysis: Revealing Intraparticle Pacemakers in Catalytic H ₂ Oxidation on Rh. ACS Catalysis, 2021, 11, 10020-10027.	11.2	9
28	The mobility of an alkali promoter as probedin situ during a catalytic reaction: Li in the CO oxidation on Pt. Surface and Interface Analysis, 2007, 39, 161-165.	1.8	8
29	Transmitting metal–oxide interaction by solitary chemical waves: H2 oxidation on ZrO2 supported Rh. Surface Science, 2019, 679, 163-168.	1.9	8
30	Metastable impact electron emission microscopy: principles and applications. Surface and Interface Analysis, 2006, 38, 378-382.	1.8	7
31	Analysing the Reaction Kinetics for Individual Catalytically Active Components: CO Oxidation on a Pd Powder Supported by Pt Foil. Catalysis Letters, 2015, 145, 1120-1125.	2.6	7
32	Field Ion and Field Desorption Microscopy: Surface Chemistry Applications. , 2018, , 162-179.		7
33	Catalysis by Imaging: From Meso- to Nano-scale. Topics in Catalysis, 2020, 63, 1532-1544.	2.8	7
34	Revisiting Local Electric Fields on Close-Packed Metal Surfaces: Theory Versus Experiments. Solid State Phenomena, 2007, 128, 219-224.	0.3	6
35	High-field versus high-pressure: Weakly adsorbed CO species on Pt(111). Ultramicroscopy, 2009, 109, 430-435.	1.9	5
36	Coexisting multi-states in catalytic hydrogen oxidation on rhodium. Nature Communications, 2021, 12, 6517.	12.8	5

Yuri Suchorski

#	Article	IF	CITATIONS
37	Surface Diffusion Via Adsorbate Density Fluctuations. , 2018, , 648-665.		4
38	A novel wireless sample temperature control system for field ion, field electron, and atom probe techniques. Review of Scientific Instruments, 2020, 91, 013705.	1.3	4
39	Probing adsorption on a nanoscale: field desorption microspectroscopy. Adsorption, 2017, 23, 217-224.	3.0	3
40	Coadsorption of lithium and oxygen on W(112): Nanosized facets versus single crystals. Ultramicroscopy, 2011, 111, 381-385.	1.9	2
41	Surface science studies of the diffusion of adsorbed and intercalated lithium. Solid State Ionics, 2018, 316, 143-152.	2.7	2