

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743725/publications.pdf Version: 2024-02-01

Ο Υμ

#	Article	IF	CITATIONS
1	Rapid screening of illegally added drugs in functional food using a miniature ion trap mass spectrometer. Food Chemistry, 2022, 386, 132808.	4.2	11
2	High-Throughput Screening Using a Synchronized Pulsed Self-aspiration Vacuum Electrospray Ionization Miniature Mass Spectrometer. Analytical Chemistry, 2022, 94, 7417-7424.	3.2	7
3	Data-driven and coarse-to-fine baseline correction for signals of analytical instruments. Analytica Chimica Acta, 2021, 1157, 338386.	2.6	9
4	Fabricating an Electrospray Ionization Chip Based on Induced Polarization and Liquid Splitting. Micromachines, 2021, 12, 1034.	1.4	2
5	Development of membrane inlet photoionization ion trap mass spectrometer for trace VOCs analysis. Talanta, 2021, 230, 122352.	2.9	18
6	Implementation and study of dopantâ€assisted photoionization with a miniature capillary inlet ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2020, 34, e8621.	0.7	8
7	Layerâ€byâ€layer selfâ€assembly of a novel covalent organic frameworks microextraction coating for analyzing polycyclic aromatic hydrocarbons from aqueous solutions via gas chromatography. Journal of Separation Science, 2020, 43, 896-904.	1.3	19
8	Asymmetric rectilinear ion trap with unidirectional ion ejection capability. Journal of Mass Spectrometry, 2020, 55, e4606.	0.7	2
9	Induced Self-aspiration Electrospray Ionization Mass Spectrometry for Flexible Sampling and Analysis. Analytical Chemistry, 2020, 92, 4600-4606.	3.2	8
10	Mass spectrometry coupled with vacuum thermal desorption for enhanced volatile organic sample analysis. Analytical Methods, 2020, 12, 1852-1857.	1.3	7
11	Exploiting the native inspiratory ability of a mass spectrometer to improve analysis efficiency. RSC Advances, 2020, 10, 4103-4109.	1.7	6
12	Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. Journal of Proteomics, 2020, 215, 103671.	1.2	15
13	Discontinuous Subatmospheric Pressure Interface Reduces the Gas Flow Effects on Miniature CAPI Mass Spectrometer. Analytical Chemistry, 2020, 92, 3707-3715.	3.2	19
14	Determination of Volatile Water Pollutants Using Cross-Linked Polymeric Ionic Liquid as Solid Phase Micro-Extraction Coatings. Polymers, 2020, 12, 292.	2.0	11
15	Capillary introduction mass spectrometry coupled with selective cryotrapping for analysis of volatile compounds in water. Analytical Methods, 2019, 11, 5237-5242.	1.3	2
16	Comparison of Membrane Inlet and Capillary Introduction Miniature Mass Spectrometry for Liquid Analysis. Polymers, 2019, 11, 567.	2.0	11
17	lon Distribution Profiling in an Ion Mobility Spectrometer by Laser-Induced Fluorescence. Analytical Chemistry, 2018, 90, 4514-4520.	3.2	5
18	High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Journal of Proteomics, 2018, 174, 9-16.	1.2	66

Q Yu

#	Article	IF	CITATIONS
19	Fast quantitative urinary proteomic profiling workflow for biomarker discovery in kidney cancer. Clinical Proteomics, 2018, 15, 42.	1.1	16
20	Pulsed capillary introduction applied to a miniature mass spectrometer for efficient liquid analysis. Rapid Communications in Mass Spectrometry, 2018, 32, 2159-2165.	0.7	8
21	Geometric optimization of toroidal ion trap based on electric field analysis and SIMION simulation. International Journal of Mass Spectrometry, 2018, 434, 60-64.	0.7	3
22	Fabricating and Characterizing the Microfluidic Solid Phase Extraction Module Coupling with Integrated ESI Emitters. Micromachines, 2018, 9, 212.	1.4	11
23	Fluorescence quantum efficiency of three samples at atmosphere based on electrospray ionization and drift tube of ion mobility spectrometry. , 2018, , .		0
24	Characterization and application of a selfâ€aspirating electrospray source with pneumaticâ€assisted ionization. Journal of Mass Spectrometry, 2017, 52, 109-115.	0.7	8
25	Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet. Journal of the American Society for Mass Spectrometry, 2017, 28, 1702-1708.	1.2	16
26	Reducing mass peak instability caused by the phase changes of RF and AC signals in a rectilinear ion-trap analyzer. Review of Scientific Instruments, 2017, 88, 034103.	0.6	5
27	Development of Electrospray/Photoionization Miniature Ion Trap Mass Spectrometer. Chinese Journal of Analytical Chemistry, 2017, 45, 1096-1101.	0.9	11
28	Multi-channel microfluidic chip coupling with mass spectrometry for simultaneous electro-sprays and extraction. Scientific Reports, 2017, 7, 17389.	1.6	11
29	Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer. Analytical Chemistry, 2017, 89, 12938-12944.	3.2	21
30	Characterizing the Deformation of the Polydimethylsiloxane (PDMS) Membrane for Microfluidic System through Image Processing. Micromachines, 2016, 7, 92.	1.4	7
31	Study and optimization of key parameters of a laser ablation ion mobility spectrometer. , 2016, , .		0
32	Microfluidic self-aspiration sonic-spray ionization chip with single and dual ionization channels for mass spectrometry. RSC Advances, 2016, 6, 50180-50189.	1.7	8
33	Using asymmetrical bipolar mode ion shutter to reduce induced voltage pulse in FT-IMS. International Journal of Mass Spectrometry, 2016, 409, 38-43.	0.7	3
34	Computer simulations of a new toroidal-cylindrical ion trap mass analyzer. Rapid Communications in Mass Spectrometry, 2016, 30, 2271-2278.	0.7	5
35	A progressively reduced pretension method to fabricate Bradbury-Nielsen gates with uniform tension. Review of Scientific Instruments, 2015, 86, 115105.	0.6	3
36	Experimental and simulation investigation of ion transfer in different sampling capillaries. Journal of Mass Spectrometry, 2015, 50, 1367-1373.	0.7	7

Q Yu

#	Article	IF	CITATIONS
37	Design and study of an atmospheric pressure ion funnel by computer simulations. Rapid Communications in Mass Spectrometry, 2015, 29, 1055-1061.	0.7	15
38	Three-Dimensional Electro-Sonic Flow Focusing Ionization Microfluidic Chip for Mass Spectrometry. Micromachines, 2015, 6, 1890-1902.	1.4	15
39	Trace element analysis of aqueous samples by laser-induced breakdown spectroscopy based on pre-concentration of electrospray. , 2015, , .		0
40	Study of ion transmission for a linear mode Bradbury–Nielsen gate in ion mobility spectrometer. International Journal of Mass Spectrometry, 2015, 379, 75-79.	0.7	3
41	A Reliable and Simple Method for Fabricating a Poly(Dimethylsiloxane) Electrospray Ionization Chip with a Corner-Integrated Emitter. Sensors, 2015, 15, 8931-8944.	2.1	11
42	Gaseous phase ion detection method based on laser-induced fluorescence for ion mobility spectrometer. Proceedings of SPIE, 2015, , .	0.8	2
43	Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry. , 2015, , .		0
44	A simple template-based transfer method to fabricate Bradbury–Nielsen gates with uniform tension for ion mobility spectrometry. Review of Scientific Instruments, 2014, 85, 085107.	0.6	9
45	Application of Capillary Introduction Mass Spectrometer to Direct Analysis of Liquid. Chinese Journal of Analytical Chemistry, 2013, 41, 1287.	0.9	7
46	Simultaneous Acquisition of Elemental, Fragmental, and Molecular Information on Organometallic Compounds. Analytical Chemistry, 2011, 83, 2403-2407.	3.2	8
47	High irradiance laser ionization orthogonal timeâ€ofâ€flight mass spectrometry: A versatile tool for solid analysis. Mass Spectrometry Reviews, 2011, 30, 1256-1268.	2.8	35
48	Progress of laser ionization mass spectrometry for elemental analysis — A review of the past decade. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 871-883.	1.5	49
49	High irradiance laser ionization mass spectrometry for direct speciation of iron oxides. Journal of the American Society for Mass Spectrometry, 2010, 21, 1227-1234.	1.2	18
50	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer. Analyst, The, 2010, 135, 2970.	1.7	133
51	Analysis of solids with different matrices by buffer-gas-assisted laser ionization orthogonal time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 1155.	1.6	20
52	A small highâ€irradiance laser ionization timeâ€ofâ€flight mass spectrometer. Journal of Mass Spectrometry, 2009, 44, 780-785.	0.7	21
53	Semiquantitative multielemental analysis of biological samples by a laser ionization orthogonal time-of-flight mass spectrometer. Journal of the American Society for Mass Spectrometry, 2009, 20, 1355-1358.	1.2	17
54	Laser ionization time-of-flight mass spectrometry for direct elemental analysis. TrAC - Trends in Analytical Chemistry, 2009, 28, 1174-1185.	5.8	37

Q Yu

#	Article	IF	CITATIONS
55	Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal Time of Flight Mass Spectrometer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 255-261.	1.5	15
56	Characterization of laser ablation and ionization in helium and argon: A comparative study by time-of-flight mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1204-1211.	1.5	17
57	Applicability of Standardless Semiquantitative Analysis of Solids by High-Irradiance Laser Ionization Orthogonal Time-of-Fight Mass Spectrometry. Analytical Chemistry, 2009, 81, 4343-4348.	3.2	41
58	Femtogram Detection and Quantitation of Residues Using Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2009, 81, 8623-8626.	3.2	15
59	Semi-quantitative analysis of geological samples using laser plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2009, 24, 228-231.	1.6	12
60	Characteristics and comparison of different radiofrequencyâ€only multipole cooling cells. Rapid Communications in Mass Spectrometry, 2008, 22, 3327-3333.	0.7	12
61	Parametric evaluation of laser ablation and ionization time-of-flight mass spectrometry with ion guide cooling cell. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 868-874.	1.5	18
62	Progress in the Development of a Miniature Mass Spectrometry. Applied Mechanics and Materials, 0, 241-244, 529-532.	0.2	3
63	Improving the Current Stability through the Bubbles-Free Microfluidic Electro-Spray Ionizing Chip. Key Engineering Materials, 0, 609-610, 637-641.	0.4	0