Ronald Burton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743657/publications.pdf

Version: 2024-02-01

134 papers

7,421 citations

44042 48 h-index 78 g-index

141 all docs

141 docs citations

141 times ranked 4974 citing authors

#	Article	IF	CITATIONS
1	A disproportionate role for mt <scp>DNA</scp> in <scp>D</scp> obzhansky– <scp>M</scp> uller incompatibilities?. Molecular Ecology, 2012, 21, 4942-4957.	2.0	272
2	Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends in Genetics, 2001, 17, 400-406.	2.9	237
3	Cytonuclear Genomic Interactions and Hybrid Breakdown. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 281-302.	3.8	235
4	Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5197-5201.	3.3	224
5	INTERPOPULATION HYBRID BREAKDOWN MAPS TO THE MITOCHONDRIAL GENOME. Evolution; International Journal of Organic Evolution, 2008, 62, 631-638.	1.1	220
6	INTRASPECIFIC PHYLOGEOGRAPHY ACROSS THE POINT CONCEPTION BIOGEOGRAPHIC BOUNDARY. Evolution; International Journal of Organic Evolution, 1998, 52, 734-745.	1.1	188
7	The Sorry State of F2 Hybrids: Consequences of Rapid Mitochondrial DNA Evolution in Allopatric Populations. American Naturalist, 2006, 168, S14-S24.	1.0	183
8	Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12955-12958.	3.3	181
9	DISRUPTION OF MITOCHONDRIAL FUNCTION IN INTERPOPULATION HYBRIDS OF TIGRIOPUS CALIFORNICUS. Evolution; International Journal of Organic Evolution, 2006, 60, 1382-1391.	1.1	162
10	Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecology and Evolution, 2018, 2, 1250-1257.	3.4	154
11	Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evolutionary Biology, 2012, 12, 170.	3.2	150
12	<scp>RNA</scp> â€seq reveals regional differences in transcriptome response to heat stress in the marine snail <i><scp>C</scp>hlorostoma funebralis</i> . Molecular Ecology, 2015, 24, 610-627.	2.0	145
13	HYBRID BREAKDOWN IN DEVELOPMENTAL TIME IN THE COPEPOD TIGRIOPUS CALIFORNICUS. Evolution; International Journal of Organic Evolution, 1990, 44, 1814-1822.	1.1	137
14	THE RECRUITMENT SWEEPSTAKES HAS MANY WINNERS: GENETIC EVIDENCE FROM THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS. Evolution; International Journal of Organic Evolution, 2002, 56, 1445-1453.	1.1	129
15	Evidence for Compensatory Evolution of Ribosomal Proteins in Response to Rapid Divergence of Mitochondrial rRNA. Molecular Biology and Evolution, 2012, 30, 310-314.	3.5	122
16	Physiological effects of an allozyme polymorphism: Glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochemical Genetics, 1983, 21, 239-251.	0.8	119
17	Mating system of the intertidal copepod Tigriopus californicus. Marine Biology, 1985, 86, 247-252.	0.7	118
18	Intraspecific Phylogeography Across the Point Conception Biogeographic Boundary. Evolution; International Journal of Organic Evolution, 1998, 52, 734.	1.1	115

#	Article	IF	Citations
19	Genetic heterogeneity among adult and recruit red sea urchins, Strongylocentrotus franciscanus. Marine Biology, 2000, 136, 773-784.	0.7	108
20	CYTOCHROME <i>C</i> OXIDASE ACTIVITY IN INTERPOPULATION HYBRIDS OF A MARINE COPEPOD: A TEST FOR NUCLEARâ€NUCLEAR OR NUCLEARâ€CYTOPLASMIC COADAPTATION. Evolution; International Journal of Organic Evolution, 1999, 53, 1972-1978.	1.1	106
21	Evolution of Interacting Proteins in the Mitochondrial Electron Transport System in a Marine Copepod. Molecular Biology and Evolution, 2004, 21, 443-453.	3.5	106
22	Genetic Architecture of Physiological Phenotypes: Empirical Evidence for Coadapted Gene Complexes. American Zoologist, 1999, 39, 451-462.	0.7	95
23	Tracing Hybrid Incompatibilities to Single Amino Acid Substitutions. Molecular Biology and Evolution, 2006, 23, 559-564.	3.5	94
24	Assessing the fitness consequences of mitonuclear interactions in natural populations. Biological Reviews, 2019, 94, 1089-1104.	4.7	90
25	Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15831-15836.	3.3	89
26	VIABILITY OF CYTOCHROME C GENOTYPES DEPENDS ON CYTOPLASMIC BACKGROUNDS IN TIGRIOPUS CALIFORNICUS. Evolution; International Journal of Organic Evolution, 2001, 55, 1592-1599.	1.1	84
27	DISRUPTION OF MITOCHONDRIAL FUNCTION IN INTERPOPULATION HYBRIDS OF TIGRIOPUS CALIFORNICUS. Evolution; International Journal of Organic Evolution, 2006, 60, 1382.	1.1	81
28	GENETIC EVIDENCE FOR LONG TERM PERSISTENCE OF MARINE INVERTEBRATE POPULATIONS IN AN EPHEMERAL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 1997, 51, 993-998.	1.1	80
29	Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131521.	1.2	80
30	ECOLOGICAL NOVELTY BY HYBRIDIZATION: EXPERIMENTAL EVIDENCE FOR INCREASED THERMAL TOLERANCE BY TRANSGRESSIVE SEGREGATION IN <i>> TIGRIOPUS CALIFORNICUS</i> > Evolution; International Journal of Organic Evolution, 2014, 68, 204-215.	1.1	80
31	Population genetics of black abalone, Haliotis cracherodii, along the central California coast. Journal of Experimental Marine Biology and Ecology, 2000, 254, 235-247.	0.7	77
32	POPULATION GENETICS OF (i) TIGRIOPUS CALIFORNICUS (i). II. DIFFERENTIATION AMONG NEIGHBORING POPULATIONS. Evolution; International Journal of Organic Evolution, 1981, 35, 1192-1205.	1.1	75
33	POPULATION GENETICS OF COASTAL AND ESTUARINE INVERTEBRATES: DOES LARVAL BEHAVIOR INFLUENCE POPULATION STRUCTURE?., 1982,, 537-551.		7 5
34	DIFFERENTIATION AND INTEGRATION OF THE GENOME IN POPULATIONS OF THE MARINE COPEPOD <i>TIGRIOPUS CALIFORNICUS </i> Levolution; International Journal of Organic Evolution, 1987, 41, 504-513.	1.1	75
35	Hybrid Breakdown in Developmental Time in the Copepod Tigriopus californicus. Evolution; International Journal of Organic Evolution, 1990, 44, 1814.	1.1	7 5
36	ENVIRONMENTAL INFLUENCES ON EPISTATIC INTERACTIONS: VIABILITIES OF CYTOCHROME C GENOTYPES IN INTERPOPULATION CROSSES. Evolution; International Journal of Organic Evolution, 2003, 57, 2286-2292.	1.1	75

3

#	Article	IF	Citations
37	Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution; International Journal of Organic Evolution, 2006, 60, 1382-91.	1.1	74
38	Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170236.	1.2	73
39	Population Genetics of Tigriopus californicus (Copepoda: Harpacticoida): I. Population Structure Along the Central California Coast. Marine Ecology - Progress Series, 1979, 1, 29-39.	0.9	73
40	Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene, 2007, 403, 53-59.	1.0	71
41	Hybrid Dysfunction and Physiological Compensation in Gene Expression. Molecular Biology and Evolution, 2015, 32, 613-622.	3.5	67
42	Energetics of Osmoregulation in an Intertidal Copepod: Effects of Anoxia and lipid Reserves on the Pattern of Free Amino Accumulation. Functional Ecology, 1989, 3, 81.	1.7	65
43	Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. Journal of Evolutionary Biology, 2010, 23, 528-538.	0.8	63
44	Spatial ecology and conservation of Manta birostris in the Indo-Pacific. Biological Conservation, 2016, 200, 178-183.	1.9	63
45	Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Molecular Ecology, 2011, 20, 560-572.	2.0	61
46	HYBRID BREAKDOWN IN PHYSIOLOGICAL RESPONSE: A MECHANISTIC APPROACH. Evolution; International Journal of Organic Evolution, 1990, 44, 1806-1813.	1.1	57
47	Genetic Evidence for Long Term Persistence of Marine Invertebrate Populations in an Ephemeral Environment. Evolution; International Journal of Organic Evolution, 1997, 51, 993.	1.1	54
48	Strong selective effects of mitochondrial DNA on the nuclear genome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6616-6621.	3.3	53
49	Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 132, 739-750.	0.7	52
50	Transcriptomeâ€wide patterns of divergence during allopatric evolution. Molecular Ecology, 2016, 25, 1478-1493.	2.0	52
51	Changes in free amino acid concentrations during osmotic response in the intertidal copepod Tigriopus californicus. Comparative Biochemistry and Physiology A, Comparative Physiology, 1982, 73, 441-445.	0.7	51
52	Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of Tigriopus californicus. Frontiers in Physiology, 2019, 10, 213.	1.3	50
53	Cytochrome C Oxidase Activity in Interpopulation Hybrids of a Marine Copepod: A Test for Nuclear-Nuclear or Nuclear-Cytoplasmic Coadaptation. Evolution; International Journal of Organic Evolution, 1999, 53, 1972.	1.1	49
54	Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach,) Tj ETQq0 0 2008, 355, 47-58.	0 rgBT /O\ 0.7	verlock 10 Tf 5 49

2008, 355, 47-58.

#	Article	lF	Citations
55	Invasion of Hawaiian shores by an Atlantic barnacle. Marine Ecology - Progress Series, 1998, 165, 119-126.	0.9	49
56	Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Molecular Ecology Resources, 2021, 21, 2546-2564.	2.2	48
57	Linkage relationships among five enzyme-coding gene loci in the copepod Tigriopus californicus: A genetic confirmation of achiasmatic meiosis. Biochemical Genetics, 1981, 19, 1237-1245.	0.8	46
58	Population Genetics of Tigriopus Californicus. II. Differentiation Among Neighboring Populations. Evolution; International Journal of Organic Evolution, 1981, 35, 1192.	1.1	45
59	Multiple mating, paternity, and body size in a simultaneous hermaphrodite, Aplysia californica. Behavioral Ecology, 2003, 14, 554-560.	1.0	45
60	A new poecilogonous species of sea slug (Opisthobranchia: Sacoglossa) from California: comparison with the planktotrophic congener Alderia modesta (Lovén, 1844). Journal of Molluscan Studies, 2007, 73, 29-38.	0.4	45
61	Molecular tools in marine ecology. Journal of Experimental Marine Biology and Ecology, 1996, 200, 85-101.	0.7	44
62	Genomic scans reveal multiple mitoâ€nuclear incompatibilities in population crosses of the copepod <i>Tigriopus californicus</i> . Evolution; International Journal of Organic Evolution, 2019, 73, 609-620.	1.1	44
63	Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story. Marine Ecology - Progress Series, 2000, 202, 303-308.	0.9	44
64	Monitoring Spawning Activity in a Southern California Marine Protected Area Using Molecular Identification of Fish Eggs. PLoS ONE, 2015, 10, e0134647.	1.1	43
65	Temporal attachment dynamics by distinct bacterial taxa during a dinoflagellate bloom. Aquatic Microbial Ecology, 2011, 63, 111-122.	0.9	43
66	Population structure of the intertidal copepod Tigriopus californicus as revealed by field manipulation of allele frequencies. Oecologia, 1984, 65, 108-111.	0.9	41
67	Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail <i>Chlorostoma funebralis</i> Molecular Ecology, 2016, 25, 3557-3573.	2.0	39
68	Differentiation and Integration of the Genome in Populations of the Marine Copepod Tigriopus californicus. Evolution; International Journal of Organic Evolution, 1987, 41, 504.	1.1	38
69	Interpopulation hybridization results in widespread viability selection across the genome in Tigriopus californicus. BMC Genetics, 2011, 12, 54.	2.7	37
70	Evaluating the Performance of Captive Breeding Techniques for Conservation Hatcheries: A Case Study of the Delta Smelt Captive Breeding Program. Journal of Heredity, 2013, 104, 92-104.	1.0	37
71	Early life stages are not always the most sensitive: heat stress responses in the copepod Tigriopus californicus. Marine Ecology - Progress Series, 2014, 517, 75-83.	0.9	37
72	Highâ€throughput molecular identification of fish eggs using multiplex suspension bead arrays. Molecular Ecology Resources, 2012, 12, 57-66.	2.2	36

#	Article	IF	CITATIONS
73	Phenotypic evidence for local adaptation to heat stress in the marine snail Chlorostoma (formerly) Tj ETQq1	1 0.784314 rgB 0.7	3T ₃ /Overlo <mark>ck</mark>
74	Amino acid synthesis during hyperosmotic stress in penaeus aztecus postlarvae. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 106, 49-56.	0.7	32
75	Molecular Evolution at the Cytochrome Oxidase Subunit 2 Gene Among Divergent Populations of the Intertidal Copepod, Tigriopus californicus. Journal of Molecular Evolution, 2006, 62, 753-764.	0.8	31
76	Reverse genetics in the tide pool: knockâ€down of target gene expression via <scp>RNA</scp> interference in the copepod <i><scp>T</scp>igriopus californicus</i> . Molecular Ecology Resources, 2015, 15, 868-879.	2.2	31
77	Variation in cytochrome-c oxidase activity is not maternally inherited in the copepod Tigriopus californicus. Heredity, 1998, 80, 668-674.	1.2	30
78	DNA sequencing of fish eggs and larvae reveals high species diversity and seasonal changes in spawning activity in the southeastern Gulf of California. Marine Ecology - Progress Series, 2018, 592, 159-179.	0.9	29
79	Regulation of proline synthesis during osmotic stress in the copepodTigriopus californicus. The Journal of Experimental Zoology, 1991, 259, 166-173.	1.4	28
80	Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 639-646.	0.7	28
81	Dynamics of marine bacterial and phytoplankton populations using multiplex liquid bead array technology. Environmental Microbiology, 2010, 12, 975-989.	1.8	28
82	Variation in developmental temperature alters adulthood plasticity of thermal tolerance in <i>Tigriopus californicus (i>. Journal of Experimental Biology, 2019, 222, .</i>	0.8	27
83	Hybrid Breakdown in Physiological Response: A Mechanistic Approach. Evolution; International Journal of Organic Evolution, 1990, 44, 1806.	1.1	26
84	Temporal and spatial distributions of marine Synechococcus in the Southern California Bight assessed by hybridization to bead-arrays. Marine Ecology - Progress Series, 2011, 426, 133-147.	0.9	26
85	A gene-based SNP resource and linkage map for the copepod Tigriopus californicus. BMC Genomics, 2011, 12, 568.	1.2	25
86	VARIATION IN ALCOHOL DEHYDROGENASE ACTIVITY AND FLOOD TOLERANCE IN WHITE CLOVER, <i>TRIFOLIUM REPENS</i> : Evolution; International Journal of Organic Evolution, 1992, 46, 721-734.	1.1	24
87	Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene. Molecular Biology and Evolution, 2018, 35, 2110-2119.	3.5	24
88	Efficacy of metabarcoding for identification of fish eggs evaluated with mock communities. Ecology and Evolution, 2020, 10, 3463-3476.	0.8	24
89	Isolation and characterization of cytochrome c from the marine copepod Tigriopus californicus. Gene, 2000, 248, 15-22.	1.0	23
90	Unexpected genetic differentiation between recently recolonized populations of a longâ€lived and highly vagile marine mammal. Ecology and Evolution, 2013, 3, 3701-3712.	0.8	22

#	Article	IF	Citations
91	Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Molecular Ecology, 2021, 30, 6403-6416.	2.0	22
92	Incorporation of 14C-bicarbonate into the free amino acid pool during hyperosmotic stress in an intertidal copepod. The Journal of Experimental Zoology, 1986, 238, 55-61.	1.4	21
93	Regulation of proline synthesis in osmotic response: Effects of protein synthesis inhibitors. The Journal of Experimental Zoology, 1991, 259, 272-277.	1.4	21
94	Ribosomal RNA Gene Silencing in Interpopulation Hybrids of Tigriopus californicus: Nucleolar Dominance in the Absence of Intergenic Spacer Subrepeats. Genetics, 2006, 173, 1479-1486.	1.2	21
95	The role of mitonuclear incompatibilities in allopatric speciation. Cellular and Molecular Life Sciences, 2022, 79, 103.	2.4	21
96	VIABILITY OF CYTOCHROME C GENOTYPES DEPENDS ON CYTOPLASMIC BACKGROUNDS IN TIGRIOPUS CALIFORNICUS. Evolution; International Journal of Organic Evolution, 2001, 55, 1592.	1.1	20
97	Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Systematics and Biodiversity, 2016, 14, 288-302.	0.5	20
98	Multiple paternity in leopard shark (Triakis semifasciata) litters sampled from a predominantly female aggregation in La Jolla, California, USA. Journal of Experimental Marine Biology and Ecology, 2013, 446, 110-114.	0.7	19
99	Application of bead array technology to community dynamics of marine phytoplankton. Marine Ecology - Progress Series, 2005, 288, 75-85.	0.9	19
100	Exposure to fluctuating salinity enhances free amino acid accumulation inTigriopus californicus (Copepoda). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1988, 158, 99-105.	0.7	18
101	Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats. Gene, 2005, 344, 105-113.	1.0	18
102	Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm. Physiological and Biochemical Zoology, 2019, 92, 152-162.	0.6	17
103	ENVIRONMENTAL INFLUENCES ON EPISTATIC INTERACTIONS: VIABILITIES OF CYTOCHROME C GENOTYPES IN INTERPOPULATION CROSSES. Evolution; International Journal of Organic Evolution, 2003, 57, 2286.	1.1	16
104	Molecular Markers, Natural History, and Conservation of Marine Animals. BioScience, 2009, 59, 831-840.	2.2	14
105	Genetic structure of leopard shark (Triakis semifasciata) populations along the Pacific coast of North America. Journal of Experimental Marine Biology and Ecology, 2015, 472, 151-157.	0.7	14
106	Depth regulatory behavior of the first stage zoea larvae of the sand crab Emerita analoga Stimpson (Decapoda: Hippidae). Journal of Experimental Marine Biology and Ecology, 1979, 37, 255-270.	0.7	13
107	Genetics of mitochondrial glutamate-oxaloacetate transaminase (GOT-2) in Tigriopus californicus. Biochemical Genetics, 1984, 22, 339-347.	0.8	13
108	Variation in Alcohol Dehydrogenase Activity and Flood Tolerance in White Clover, Trifolium repens. Evolution; International Journal of Organic Evolution, 1992, 46, 721.	1.1	12

#	Article	IF	CITATIONS
109	Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus. PLoS ONE, 2012, 7, e40035.	1.1	12
110	THE RECRUITMENT SWEEPSTAKES HAS MANY WINNERS: GENETIC EVIDENCE FROM THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS. Evolution; International Journal of Organic Evolution, 2002, 56, 1445.	1.1	11
111	Microsatellite and Mitochondrial Genetic Comparisons between Northern and Southern Populations of California Grunion (Leuresthes tenuis). Copeia, 2009, 2009, 465-474.	1.4	11
112	Twins or not? Genetic analysis of putative twins in Antarctic fur seals, Arctocephalus gazella, on the South Shetland Islands. Journal of Experimental Marine Biology and Ecology, 2012, 412, 13-19.	0.7	11
113	High male reproductive success in a low-density Antarctic fur seal (Arctocephalus gazella) breeding colony. Behavioral Ecology and Sociobiology, 2014, 68, 597-604.	0.6	11
114	Allele-Specific Expression and Evolution of Gene Regulation Underlying Acute Heat Stress Response and Local Adaptation in the Copepod <i>Tigriopus californicus</i> Journal of Heredity, 2020, 111, 539-547.	1.0	9
115	Trehalase polymorphism in Drosophila melanogaster. Biochemical Genetics, 1986, 24, 715-719.	0.8	8
116	Isolation and cross-amplification of microsatellites in pink abalone (Haliotis corrugata). Molecular Ecology Resources, 2008, 8, 701-703.	2.2	8
117	Sex-specific rejection in mate-guarding pair formation in the intertidal copepod, Tigriopus californicus. PLoS ONE, 2017, 12, e0183758.	1.1	7
118	Admixture in Africanized honey bees ($\langle i \rangle$ Apis mellifera $\langle i \rangle$) from PanamÃ; to San Diego, California (U.S.A.). Ecology and Evolution, 2022, 12, e8580.	0.8	7
119	Hybridization between delta smelt and two other species within the family Osmeridae in the San Francisco Bay-Delta. Conservation Genetics, 2014, 15, 489-494.	0.8	6
120	Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus. PLoS ONE, 2021, 16, e0259371.	1.1	5
121	Impacts of ecology and behavior on Antarctic fur seal remating and relatedness. Journal of Experimental Marine Biology and Ecology, 2016, 476, 72-77.	0.7	4
122	Individual Culturing of Tigriopus Copepods and Quantitative Analysis of Their Mate-guarding Behavior. Journal of Visualized Experiments, 2018, , .	0.2	4
123	Consequences of <i>HSF</i> knockdown on gene expression during the heat shock response in <i>Tigriopus californicus</i> Journal of Experimental Biology, 2020, 223, .	0.8	4
124	Regional patterns of thermal stress and constitutive gene expression in the marine snail Chlorostoma funebralis in northern and southern California. Marine Ecology - Progress Series, 2016, 556, 143-159.	0.9	4
125	Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus) Tj ETQq $1\ 1\ 0.784314$	rgBT/Ove	rlogk 10 Tf 5
126	Population genetics and conservation implications for the endangered delta smelt in the San Francisco Bay-Delta. Conservation Genetics, 2011, 12, 1421-1434.	0.8	2

#	Article	IF	CITATIONS
127	Standing out from the crowd: Spotting your targets in a mixed plankton sample. Molecular Ecology Resources, 2017, 17, 1105-1107.	2.2	2
128	Interbreeding between two populations of Acartia californiensis (Copepoda: Calanoida): a laboratory study. Journal of the Marine Biological Association of the United Kingdom, 1999, 79, 945-948.	0.4	0
129	Spatial and temporal variation in the species diversity of coastal California fish eggs. Marine Ecology - Progress Series, 2021, 669, 139-149.	0.9	0
130	The importance of making testable predictions: A cautionary tale. PLoS ONE, 2020, 15, e0236541.	1.1	0
131	The importance of making testable predictions: A cautionary tale. , 2020, 15, e0236541.		0
132	The importance of making testable predictions: A cautionary tale. , 2020, 15, e0236541.		0
133	The importance of making testable predictions: A cautionary tale. , 2020, 15, e0236541.		0
134	The importance of making testable predictions: A cautionary tale. , 2020, 15, e0236541.		0