
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743627/publications.pdf Version: 2024-02-01

REN D MOORE

#	Article	IF	CITATIONS
1	Silicon fertilisation affects morphological and immune defences of an insect pest and enhances plant compensatory growth. Journal of Pest Science, 2023, 96, 41-53.	1.9	7
2	Silicon suppresses a ubiquitous mite herbivore and promotes natural enemy attraction by altering plant volatile blends. Journal of Pest Science, 2022, 95, 423-434.	1.9	11
3	Shortâ€ŧerm drought is a stronger driver of plant morphology and nutritional composition than warming in two common pasture species. Journal of Agronomy and Crop Science, 2022, 208, 841-852.	1.7	5
4	Characterization of the juvenile koala gut microbiome across wild populations. Environmental Microbiology, 2022, 24, 4209-4219.	1.8	9
5	Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development. Environmental Microbiology, 2022, 24, 475-493.	1.8	12
6	Pastures and Climate Extremes: Impacts of Cool Season Warming and Drought on the Productivity of Key Pasture Species in a Field Experiment. Frontiers in Plant Science, 2022, 13, 836968.	1.7	8
7	Near infrared spectroscopy calibration strategies to predict multiple nutritional parameters of pasture species from different functional groups. Journal of Near Infrared Spectroscopy, 2022, 30, 254-263.	0.8	2
8	Silicon Defence in Plants: Does Herbivore Identity Matter?. Trends in Plant Science, 2021, 26, 99-101.	4.3	13
9	Climate warming negates arbuscular mycorrhizal fungal reductions in soil phosphorus leaching with tall fescue but not lucerne. Soil Biology and Biochemistry, 2021, 152, 108075.	4.2	15
10	Comparison of three methods of estimating the population size of an arboreal mammal in a fragmented rural landscape. Wildlife Research, 2021, 48, 105.	0.7	8
11	Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine (<i>Pinus sylvestris</i> L.) seedlings. Ecology and Evolution, 2021, 11, 4826-4842.	0.8	3
12	Fundamental dietary specialisation explains differential use of resources within a koala population. Oecologia, 2021, 196, 795-803.	0.9	9
13	Arbuscular mycorrhizal fungal-mediated reductions in N2O emissions were not impacted by experimental warming for two common pasture species. Pedobiologia, 2021, 87-88, 150744.	0.5	1
14	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
15	Mapping canopy nitrogenâ€scapes to assess foraging habitat for a vulnerable arboreal folivore in mixedâ€species <i>Eucalyptus</i> forests. Ecology and Evolution, 2021, 11, 18401-18421.	0.8	4
16	Elevated atmospheric carbon dioxide concentrations alter root morphology and reduce the effectiveness of entomopathogenic nematodes. Plant and Soil, 2020, 447, 29-38.	1.8	11
17	Novel evidence for systemic induction of silicon defences in cucumber following attack by a global insect herbivore. Ecological Entomology, 2020, 45, 1373-1381.	1.1	15
18	Sample selection, calibration and validation of models developed from a large dataset of near infrared spectra of tree leaves. Journal of Near Infrared Spectroscopy, 2020, 28, 186-203.	0.8	15

#	Article	IF	CITATIONS
19	The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.	13.7	218
20	Intraspecific variation in nutritional traits of neighbouring plants generates a continuum of associational effects. Journal of Vegetation Science, 2020, 31, 920-933.	1.1	7
21	Ingestion and Absorption of Eucalypt Monoterpenes in the Specialist Feeder, the Koala (Phascolarctos) Tj ETQq1	1 8.78431	4 ₄ gBT /Over
22	When resistance is futile, tolerate instead: silicon promotes plant compensatory growth when attacked by above- and belowground herbivores. Biology Letters, 2019, 15, 20190361.	1.0	16
23	Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Animal Microbiome, 2019, 1, 6.	1.5	39
24	Climate warming and plant biomechanical defences: Silicon addition contributes to herbivore suppression in a pasture grass. Functional Ecology, 2019, 33, 587-596.	1.7	20
25	Mapping Foliar Nutrition Using WorldView-3 and WorldView-2 to Assess Koala Habitat Suitability. Remote Sensing, 2019, 11, 215.	1.8	14
26	The Ecology of Browsing and Grazing in Other Vertebrate Taxa. Ecological Studies, 2019, , 339-404.	0.4	4
27	The Koala (<i>Phascolarctos cinereus</i>) faecal microbiome differs with diet in a wild population. PeerJ, 2019, 7, e6534.	0.9	46
28	Interspecific and intraspecific relationships between body mass and diet quality in a macropodid community. Journal of Mammalogy, 2018, 99, 428-439.	0.6	4
29	Spatial correlations between browsing on balsam fir by whiteâ€ŧailed deer and the nutritional value of neighboring winter forage. Ecology and Evolution, 2018, 8, 2812-2823.	0.8	14
30	Root herbivore performance suppressed when feeding on a jasmonateâ€induced pasture grass. Ecological Entomology, 2018, 43, 547-550.	1.1	3
31	Root responses to domestication, precipitation and silicification: weeping meadow grass simplifies and alters toughness. Plant and Soil, 2018, 427, 291-304.	1.8	7
32	A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biological Reviews, 2018, 93, 674-692.	4.7	34
33	Silicon uptake by a pasture grass experiencing simulated grazing is greatest under elevated precipitation. BMC Ecology, 2018, 18, 53.	3.0	14
34	Temporal and spatial trends in the abundances of an apex predator, introduced mesopredator and ground-nesting bird are consistent with the mesopredator release hypothesis. Biodiversity and Conservation, 2017, 26, 1445-1462.	1.2	17
35	Shrub encroachment is linked to extirpation of an apex predator. Journal of Animal Ecology, 2017, 86, 147-157.	1.3	45
36	Climate and atmospheric change impacts on sapâ€feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites. Functional Ecology, 2017, 31, 161-171.	1.7	21

BEN D MOORE

#	Article	IF	CITATIONS
37	Above–Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns. Frontiers in Plant Science, 2016, 7, 345.	1.7	33
38	Novel In vitro Procedures for Rearing a Root-Feeding Pest (Heteronychus arator) of Grasslands. Frontiers in Plant Science, 2016, 7, 1316.	1.7	3
39	Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecology, 2016, 16, 47.	3.0	19
40	Use of expert knowledge to elicit population trends for the koala (<i>Phascolarctos cinereus</i>). Diversity and Distributions, 2016, 22, 249-262.	1.9	85
41	Climate change, nutrition and immunity: Effects of elevated CO 2 and temperature on the immune function of an insect herbivore. Journal of Insect Physiology, 2016, 85, 57-64.	0.9	24
42	Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant and Soil, 2016, 399, 29-39.	1.8	15
43	Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. Frontiers in Plant Science, 2016, 7, 1925.	1.7	31
44	Translating physiological signals to changes in feeding behaviour in mammals and the future effects of global climate change. Animal Production Science, 2015, 55, 272.	0.6	22
45	Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures. Journal of Experimental Botany, 2015, 66, 613-623.	2.4	28
46	Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia, 2015, 177, 607-617.	0.9	24
47	Atmospheric change and induced plant secondary metabolites — are we reshaping the building blocks of multi-trophic interactions?. Current Opinion in Insect Science, 2014, 5, 57-65.	2.2	44
48	Pinus sylvestris sapling growth and recovery from mammalian browsing. Forest Ecology and Management, 2014, 325, 18-25.	1.4	14
49	Feeding rates of a mammalian browser confirm the predictions of a â€~foodscape' model of its habitat. Oecologia, 2014, 174, 873-882.	0.9	34
50	Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 2014, 201, 733-750.	3.5	391
51	Four species of arboreal folivore show differential tolerance to a secondary metabolite. Oecologia, 2014, 176, 251-258.	0.9	24
52	Translating nutritional ecology from the laboratory to the field: milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos, 2014, 123, 298-308.	1.2	51
53	Male-Biased Predation and Its Effect on Paternity Skew and Life History in a Population of Common Brushtail Possums (Trichosurus vulpecula). PLoS ONE, 2014, 9, e111746.	1.1	3
54	A faecal index of diet quality that predicts reproductive success in a marsupial folivore. Oecologia, 2013, 173, 203-212.	0.9	20

#	Article	IF	CITATIONS
55	Self-Medication: A Learning Process?. Science, 2013, 340, 1041-1041.	6.0	4
56	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	3.5	124
57	Biology and trophic interactions of lucerne aphids. Agricultural and Forest Entomology, 2013, 15, 335-350.	0.7	28
58	Continuous monitoring of feeding by koalas highlights diurnal differences in tree preferences. Wildlife Research, 2013, 40, 639.	0.7	25
59	Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata. PLoS ONE, 2013, 8, e66053.	1.1	24
60	Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. Frontiers in Plant Science, 2013, 4, 445.	1.7	32
61	Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales. , 2012, , 226-246.		8
62	Plant secondary metabolite polymorphisms and the extended chemical phenotype. , 2012, , 247-268.		7
63	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	3.5	155
64	Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1337-1345.	1.8	60
65	The effect of plant secondary metabolites on the interplay between the internal and external environments of marsupial folivores. Chemoecology, 2010, 20, 97-108.	0.6	21
66	The Ecology of Browsing and Grazing. Austral Ecology, 2010, 35, 238-239.	0.7	1
67	Palatability mapping: a koala's eye view of spatial variation in habitat quality. Ecology, 2010, 91, 3165-3176.	1.5	107
68	The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology, 2009, 90, 711-719.	1.5	141
69	Inter-population differences in the tolerance of a marsupial folivore to plant secondary metabolites. Oecologia, 2009, 161, 539-548.	0.9	18
70	Revisiting the dietary niche: When is a mammalian herbivore a specialist?. Integrative and Comparative Biology, 2009, 49, 274-290.	0.9	121
71	A simple, integrative assay to quantify nutritional quality of browses for herbivores. Oecologia, 2008, 156, 107-116.	0.9	111
72	Number of mates and timing of mating affect offspring growth in the small marsupial Antechinus agilis. Animal Behaviour, 2006, 71, 289-297.	0.8	29

#	Article	IF	CITATIONS
73	Tree use by koalas in a chemically complex landscape. Nature, 2005, 435, 488-490.	13.7	158
74	Taught by animals: how understanding diet selection leads to better zoo diets. International Zoo Yearbook, 2005, 39, 43-61.	1.0	6
75	Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem function. Current Opinion in Plant Biology, 2005, 8, 430-435.	3.5	88
76	Eucalyptus foliar chemistry explains selective feeding by koalas. Biology Letters, 2005, 1, 64-67.	1.0	99
77	Antiherbivore Chemistry of Eucalyptus—Cues and Deterrents for Marsupial Folivores. Journal of Chemical Ecology, 2004, 30, 1743-1769.	0.9	98
78	FOLIAR NUTRITION, SITE QUALITY, AND TEMPERATURE INFLUENCE FOLIAR CHEMISTRY OF TALLOWWOOD (EUCALYPTUS MICROCORYS). Ecological Monographs, 2004, 74, 553-568.	2.4	65
79	The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. , 2004, , 549-575.		45
80	Glucuronuria in the koala. Journal of Chemical Ecology, 2003, 29, 1465-1477.	0.9	13
81	Habitat selection by adult female eastern grey kangaroos. Wildlife Research, 2002, 29, 439.	0.7	43
82	Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2001, 129, 385-395.	1.3	31
83	Fate of the Dietary Terpene, P-Cymene, in the Male Koala. Journal of Chemical Ecology, 2000, 26, 1095-1111.	0.9	29
84	A review of feeding and diet selection in koalas (Phascolarctos cinereus). Australian Journal of Zoology, 2000, 48, 317.	0.6	71
85	Warmer Ambient Temperatures Depress Detoxification and Food Intake by Marsupial Folivores. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3