List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742923/publications.pdf Version: 2024-02-01

Ασοστινίο Μιραις

#	Article	IF	CITATIONS
1	Vitamin C Improves Endothelium-Dependent Vasodilation by Restoring Nitric Oxide Activity in Essential Hypertension. Circulation, 1998, 97, 2222-2229.	1.6	682
2	Age-Related Reduction of NO Availability and Oxidative Stress in Humans. Hypertension, 2001, 38, 274-279.	1.3	595
3	Aging and Endothelial Function in Normotensive Subjects and Patients With Essential Hypertension. Circulation, 1995, 91, 1981-1987.	1.6	577
4	Physical Activity Prevents Age-Related Impairment in Nitric Oxide Availability in Elderly Athletes. Circulation, 2000, 101, 2896-2901.	1.6	402
5	Impaired Endothelium-Dependent Vasodilatation in Subclinical Hypothyroidism: Beneficial Effect of Levothyroxine Therapy. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3731-3737.	1.8	379
6	Spironolactone Improves Angiotensin-Induced Vascular Changes and Oxidative Stress. Hypertension, 2002, 40, 504-510.	1.3	373
7	Endothelium-Restricted Overexpression of Human Endothelin-1 Causes Vascular Remodeling and Endothelial Dysfunction. Circulation, 2004, 110, 2233-2240.	1.6	296
8	The eye and the heart. European Heart Journal, 2013, 34, 1270-1278.	1.0	296
9	Hypertension Causes Premature Aging of Endothelial Function in Humans. Hypertension, 1997, 29, 736-743.	1.3	266
10	Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. Journal of Hypertension, 2004, 22, 535-542.	0.3	218
11	Cyclooxygenase Inhibition Restores Nitric Oxide Activity in Essential Hypertension. Hypertension, 1997, 29, 274-279.	1.3	188
12	Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension, 2020, 75, 302-308.	1.3	177
13	Effect of the Angiotensin II Type 1 Receptor Blocker Candesartan on Endothelial Function in Patients With Essential Hypertension. Hypertension, 2000, 35, 501-506.	1.3	176
14	JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Science Advances, 2021, 7, .	4.7	176
15	Vascular inflammation: a role in vascular disease in hypertension?. Current Opinion in Nephrology and Hypertension, 2003, 12, 181-187.	1.0	160
16	Low-Grade Systemic Inflammation Causes Endothelial Dysfunction in Patients with Hashimoto's Thyroiditis. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 5076-5082.	1.8	156
17	Effect of Insulin on Acetylcholine-Induced Vasodilation in Normotensive Subjects and Patients With Essential Hypertension. Circulation, 1995, 92, 2911-2918.	1.6	147
18	Restoration of Nitric Oxide Availability After Calcium Antagonist Treatment in Essential Hypertension. Hypertension, 2001, 37, 943-948.	1.3	145

#	Article	IF	CITATIONS
19	Hyperglycemia at Hospital Admission Is Associated With Severity of the Prognosis in Patients Hospitalized for COVID-19: The Pisa COVID-19 Study. Diabetes Care, 2020, 43, 2345-2348.	4.3	133
20	Endothelial Function and Common Carotid Artery Wall Thickening in Patients With Essential Hypertension. Hypertension, 1998, 32, 25-32.	1.3	131
21	Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. European Heart Journal, 2015, 36, 784-794.	1.0	127
22	Vasodilation to Bradykinin Is Mediated by an Ouabain-Sensitive Pathway as a Compensatory Mechanism for Impaired Nitric Oxide Availability in Essential Hypertensive Patients. Circulation, 1999, 100, 1400-1405.	1.6	123
23	Hypertension and Endothelial Dysfunction: Therapeutic Approach. Current Vascular Pharmacology, 2012, 10, 42-60.	0.8	123
24	Vasoconstriction to Endogenous Endothelin-1 Is Increased in the Peripheral Circulation of Patients With Essential Hypertension. Circulation, 1999, 100, 1680-1683.	1.6	118
25	Persistent Remodeling of Resistance Arteries in Type 2 Diabetic Patients on Antihypertensive Treatment. Hypertension, 2004, 43, 399-404.	1.3	107
26	Identification of a Cytochrome P450 2C9-Derived Endothelium-Derived Hyperpolarizing Factor in Essential Hypertensive Patients. Journal of the American College of Cardiology, 2006, 48, 508-515.	1.2	105
27	Poor sleep quality and resistant hypertension. Sleep Medicine, 2013, 14, 1157-1163.	0.8	100
28	Vascular Generation of Tumor Necrosis Factor-α Reduces Nitric Oxide Availability in Small Arteries From Visceral Fat of Obese Patients. Journal of the American College of Cardiology, 2011, 58, 238-247.	1.2	98
29	Endothelial Dysfunction in Small Arteries of Essential Hypertensive Patients. Hypertension, 2013, 62, 337-344.	1.3	97
30	Impact of inflammation on vascular disease in hypertension. Maturitas, 2014, 78, 179-183.	1.0	95
31	Cyclooxygenase-2 Inhibition Improves Vascular Endothelial Dysfunction in a Rat Model of Endotoxic Shock: Role of Inducible Nitric-Oxide Synthase and Oxidative Stress. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 945-953.	1.3	92
32	Effects of angiotensin converting enzyme inhibition on endothelium-dependent vasodilatation in essential hypertensive patients. Journal of Hypertension, 1998, 16, 447-456.	0.3	89
33	Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding. Obesity Research and Clinical Practice, 2020, 14, 205-209.	0.8	89
34	Mechanisms responsible for endothelial dysfunction induced by fasting hyperhomocystinemia in normotensive subjects and patients with essential hypertension. Journal of the American College of Cardiology, 2001, 38, 1106-1115.	1.2	87
35	Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. European Journal of Heart Failure, 2021, 23, 1858-1871.	2.9	86
36	Oxidative Stress and Vascular Damage in Hypertension: Role of Angiotensin II. International Journal of Hypertension, 2011, 2011, 1-7.	0.5	82

#	Article	IF	CITATIONS
37	Effect of Hyperhomocystinemia and Hypertension on Endothelial Function in Methylenetetrahydrofolate Reductase–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1352-1357.	1.1	76
38	Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascular Pharmacology, 2019, 115, 13-17.	1.0	75
39	Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. European Heart Journal, 2021, 42, 2590-2604.	1.0	74
40	Human endothelial dysfunction: EDCFs. Pflugers Archiv European Journal of Physiology, 2010, 459, 1015-1023.	1.3	71
41	Serum uric acid and fatal myocardial infarction: detection of prognostic cut-off values: The URRAH (Uric Acid Right for Heart Health) study. Journal of Hypertension, 2020, 38, 412-419.	0.3	70
42	Endothelial Dysfunction in Obesity: Role of Inflammation. High Blood Pressure and Cardiovascular Prevention, 2016, 23, 83-85.	1.0	69
43	Cyclooxygenase-1 Is Involved in Endothelial Dysfunction of Mesenteric Small Arteries From Angiotensin II–Infused Mice. Hypertension, 2007, 49, 679-686.	1.3	66
44	Different Impact of Essential Hypertension on Structural and Functional Age-Related Vascular Changes. Hypertension, 2017, 69, 71-78.	1.3	63
45	Association between blood pressure variability, cardiovascular disease and mortality in type 2 diabetes: A systematic review and metaâ€analysis. Diabetes, Obesity and Metabolism, 2019, 21, 2587-2598.	2.2	63
46	Antihypertensive drugs and reversing of endothelial dysfunction in hypertension. Current Hypertension Reports, 2000, 2, 64-70.	1.5	62
47	Atorvastatin Prevents Endothelial Dysfunction in Mesenteric Arteries From Spontaneously Hypertensive Rats. Hypertension, 2009, 53, 1008-1016.	1.3	62
48	Insulin Sensitivity, Vascular Reactivity, and Clamp-Induced Vasodilatation in Essential Hypertension. Circulation, 1997, 96, 849-855.	1.6	57
49	Microvascular Endothelial Dysfunction in Obesity and Hypertension. Current Pharmaceutical Design, 2013, 19, 2382-2389.	0.9	57
50	Central blood pressure, arterial stiffness, and wave reflection: New targets of treatment in essential hypertension. Current Hypertension Reports, 2009, 11, 190-196.	1.5	56
51	Effects of Antihypertensive Treatment on Endothelial Function. Current Hypertension Reports, 2011, 13, 276-281.	1.5	55
52	Early treatment with hydroxychloroquine prevents the development of endothelial dysfunction in a murine model of systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 277.	1.6	55
53	Microvascular Endothelial Dysfunction in Human Obesity: Role of TNF- <i>α</i> . Journal of Clinical Endocrinology and Metabolism, 2019, 104, 341-348.	1.8	54
54	Evaluation of microvascular structure in humans. Journal of Hypertension, 2014, 32, 2120-2129.	0.3	53

AGOSTINO VIRDIS

#	Article	IF	CITATIONS
55	Microvascular Endothelial Dysfunction in Patients with Obesity. Current Hypertension Reports, 2019, 21, 32.	1.5	53
56	Effect of aliskiren treatment on endothelium-dependent vasodilation and aortic stiffness in essential hypertensive patients. European Heart Journal, 2012, 33, 1530-1538.	1.0	52
57	Calcium Antagonist Treatment by Lercanidipine Prevents Hyperpolarization in Essential Hypertension. Hypertension, 2003, 41, 950-955.	1.3	49
58	Serum uric acid, predicts heart failure in a large Italian cohort: search for a cut-off value the URic acid Right for heArt Health study. Journal of Hypertension, 2021, 39, 62-69.	0.3	49
59	Role of Low-Molecular-Weight Heparin in Hospitalized Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia: A Prospective Observational Study. Open Forum Infectious Diseases, 2020, 7, ofaa563.	0.4	48
60	The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity. PLoS ONE, 2018, 13, e0195502.	1.1	47
61	Luteolin Prevents Cardiometabolic Alterations and Vascular Dysfunction in Mice With HFD-Induced Obesity. Frontiers in Pharmacology, 2018, 9, 1094.	1.6	46
62	Relationships between diuretic-related hyperuricemia and cardiovascular events: data from the URic acid Right for heArt Health study. Journal of Hypertension, 2021, 39, 333-340.	0.3	46
63	Trends in Prevalence, Awareness, Treatment, and Control of Blood Pressure Recorded From 2004 to 2014 During World Hypertension Day in Italy. Journal of Clinical Hypertension, 2016, 18, 551-556.	1.0	45
64	Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. European Heart Journal, 2019, 40, 383-391.	1.0	45
65	Resistance artery mechanics and composition in angiotensin II-infused rats. Journal of Hypertension, 2003, 21, 189-198.	0.3	42
66	Aging Modulates the Influence of Arginase on Endothelial Dysfunction in Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2474-2483.	1.1	41
67	Vascular Dysfunction in a Mouse Model of Rett Syndrome and Effects of Curcumin Treatment. PLoS ONE, 2013, 8, e64863.	1.1	41
68	Small artery mechanics in hyperhomocysteinemic mice. Journal of Hypertension, 2004, 22, 959-966.	0.3	40
69	Role of endothelin in the control of peripheral vascular tone in human hypertension. Heart Failure Reviews, 2001, 6, 277-285.	1.7	38
70	Exploration into Uric and Cardiovascular Disease: Uric Acid Right for heArt Health (URRAH) Project, A Study Protocol for a Retrospective Observational Study. High Blood Pressure and Cardiovascular Prevention, 2018, 25, 197-202.	1.0	35
71	Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type II diabetes and periodontitis: A randomised controlled clinical trial. International Journal of Cardiology, 2018, 271, 263-268.	0.8	34
72	Association of uric acid with kidney function and albuminuria: the Uric Acid Right for heArt Health (URRAH) Project. Journal of Nephrology, 2022, 35, 211-221.	0.9	34

#	Article	IF	CITATIONS
73	Inducible Nitric Oxide Synthase Is Involved in Endothelial Dysfunction of Mesenteric Small Arteries from Hypothyroid Rats. Endocrinology, 2009, 150, 1033-1042.	1.4	33
74	Effect of oral contraceptives on endothelial function in the peripheral microcirculation of healthy women. Journal of Hypertension, 2003, 21, 2275-2280.	0.3	31
75	Essential Hypertension and Functional Microvascular Ageing. High Blood Pressure and Cardiovascular Prevention, 2018, 25, 35-40.	1.0	31
76	The importance of including uric acid in the definition of metabolic syndrome when assessing the mortality risk. Clinical Research in Cardiology, 2021, 110, 1073-1082.	1.5	31
77	Human Ghrelin: A Gastric Hormone with Cardiovascular Properties. Current Pharmaceutical Design, 2015, 22, 52-58.	0.9	30
78	Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase. European Heart Journal, 2015, 36, ehv365.	1.0	30
79	Endothelial Dysfunction in Resistance Arteries of Hypertensive Humans. Journal of Cardiovascular Pharmacology, 2016, 67, 451-457.	0.8	30
80	Resistance artery mechanics and composition in angiotensin II-infused mice: effects of cyclooxygenase-1 inhibition. European Heart Journal, 2012, 33, 2225-2234.	1.0	28
81	Impact of apocynin on vascular disease in hypertension. Vascular Pharmacology, 2016, 87, 1-5.	1.0	28
82	Environmental Factors and Hypertension. Current Pharmaceutical Design, 2017, 23, 3239-3246.	0.9	27
83	Saxagliptin prevents vascular remodeling and oxidative stress in db/db mice. Role of endothelial nitric oxide synthase uncoupling and cyclooxygenase. Vascular Pharmacology, 2016, 76, 62-71.	1.0	25
84	Arterial hypertension in patients under antineoplastic therapy. Journal of Hypertension, 2019, 37, 884-901.	0.3	23
85	Letter to the Editor: Importance of metabolic health in the era of COVID-19. Metabolism: Clinical and Experimental, 2020, 108, 154247.	1.5	23
86	The Sulfaphenazole-Sensitive Pathway Acts as a Compensatory Mechanism for Impaired Nitric Oxide Availability in Patients with Primary Hyperparathyroidism. Effect of Surgical Treatment. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 920-927.	1.8	22
87	How to Evaluate Microvascular Organ Damage in Hypertension. High Blood Pressure and Cardiovascular Prevention, 2011, 18, 163-167.	1.0	22
88	Age- and Sex-Specific Reference Values for Media/Lumen Ratio in Small Arteries and Relationship With Risk Factors. Hypertension, 2018, 71, 1193-1200.	1.3	22
89	New Noninvasive Methods to Evaluate Microvascular Structure and Function. Hypertension, 2022, 79, 874-886.	1.3	21
90	The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovascular Research, 2019, 116, 429-437.	1.8	20

#	Article	IF	CITATIONS
91	Identification of a plausible serum uric acid cut-off value as prognostic marker of stroke: the Uric Acid Right for Heart Health (URRAH) study. Journal of Human Hypertension, 2022, 36, 976-982.	1.0	20
92	Rosuvastatin prevents angiotensin <scp>II</scp> â€induced vascular changes by inhibition of <scp>NAD</scp> (<scp>P</scp>) <scp>H</scp> oxidase and <scp>COX</scp> â€1. British Journal of Pharmacology, 2013, 169, 554-566.	2.7	18
93	Gender differences in the relationships between psychosocial factors and hypertension. Maturitas, 2016, 93, 58-64.	1.0	18
94	Serum Uric Acid and Kidney Disease Measures Independently Predict Cardiovascular and Total Mortality: The Uric Acid Right for Heart Health (URRAH) Project. Frontiers in Cardiovascular Medicine, 2021, 8, 713652.	1.1	18
95	Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Pressure and Cardiovascular Prevention, 2019, 26, 321-329.	1.0	17
96	Microvascular Ageing Links Metabolic Disease to Age-Related Disorders: The Role of Oxidative Stress and Inflammation in Promoting Microvascular Dysfunction. Journal of Cardiovascular Pharmacology, 2021, 78, S78-S87.	0.8	17
97	Serum uric acid levels threshold for mortality in diabetic individuals: The URic acid Right for heArt Health (URRAH) project. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 1245-1252.	1.1	15
98	Characterisation of Hypertensive Patients with Improved Endothelial Function after Dark Chocolate Consumption. International Journal of Hypertension, 2013, 2013, 1-6.	0.5	14
99	Drug-induced hypertension: Know the problem to know how to deal with it. Vascular Pharmacology, 2019, 115, 84-88.	1.0	14
100	Vascular reactivity in patients with undifferentiated connective tissue diseases. Atherosclerosis, 2009, 203, 185-191.	0.4	12
101	Adolescents with Classical Polycystic Ovary Syndrome Have Alterations in the Surrogate Markers of Cardiovascular Disease but Not in the Endothelial Function. The Possible Benefits of Metformin. Journal of Pediatric and Adolescent Gynecology, 2016, 29, 489-495.	0.3	12
102	The Complex Relationship Between Serum Uric Acid, Endothelial Function and Small Vessel Remodeling in Humans. Journal of Clinical Medicine, 2020, 9, 2027.	1.0	12
103	The association of uric acid with mortality modifies at old age: data from the uric acid right for heart health (URRAH) study. Journal of Hypertension, 2022, 40, 704-711.	0.3	12
104	Combination therapy with lercanidipine and enalapril reduced central blood pressure augmentation in hypertensive patients with metabolic syndrome. Vascular Pharmacology, 2017, 92, 16-21.	1.0	11
105	The relationship between cardiac injury, inflammation and coagulation in predicting COVID-19 outcome. Scientific Reports, 2021, 11, 6515.	1.6	11
106	Clinical Management of Drug-Induced Hypertension. High Blood Pressure and Cardiovascular Prevention, 2014, 21, 77-79.	1.0	9
107	Arterial Stiffness and Vascular Aging: From Pathophysiology to Treatment, with a Look at the Future. High Blood Pressure and Cardiovascular Prevention, 2018, 25, 135-136.	1.0	9
108	High heart rate amplifies the risk of cardiovascular mortality associated with elevated uric acid. European Journal of Preventive Cardiology, 2022, 29, 1501-1509.	0.8	9

AGOSTINO VIRDIS

#	Article	IF	CITATIONS
109	The relationship between telomere length and putative markers of vascular ageing: A systematic review and meta-analysis. Mechanisms of Ageing and Development, 2022, 201, 111604.	2.2	9
110	Microvascular Inflammation and Cardiovascular Prevention: The Role of Microcirculation as Earlier Determinant of Cardiovascular Risk. High Blood Pressure and Cardiovascular Prevention, 2022, 29, 41-48.	1.0	8
111	Exogenous Ghrelin on Nitric Oxide-Endothelin 1 Imbalance in Metabolic Syndrome. Hypertension, 2009, 54, 960-961.	1.3	6
112	Obesity-Related Endothelial Dysfunction: moving from classical to emerging mechanisms. Endocrine and Metabolic Science, 2020, 1, 100063.	0.7	5
113	Adenosine causes the release of active renin and angiotensin II in the coronary circulation of patients with essential hypertension. Journal of the American College of Cardiology, 1999, 33, 1677-1684.	1.2	4
114	Hypertension and Cardiometabolic Risk Factors. International Journal of Hypertension, 2013, 2013, 1-2.	0.5	4
115	The Role of Arterial Hypertension in Mitral Valve Regurgitation. Current Hypertension Reports, 2019, 21, 20.	1.5	4
116	Donepezil improves vascular function in a mouse model of Alzheimer's disease. Pharmacology Research and Perspectives, 2021, 9, e00871.	1.1	4
117	Endothelial Dysfunction, Vascular Damage and Clinical Events. High Blood Pressure and Cardiovascular Prevention, 2004, 11, 15-27.	1.0	3
118	Targeting Mitochondria in Age-Related Vascular Changes. Hypertension, 2018, 71, 1023-1025.	1.3	3
119	Serum Urate, Uricase, and Blood Pressure Control in Gout. Hypertension, 2019, 74, 23-25.	1.3	3
120	Endothelial function in hypertension: role of gender. Journal of Hypertension Supplement: Official Journal of the International Society of Hypertension, 2002, 20, S11-6.	0.1	3
121	Albuminuria and diabetes. Journal of Hypertension, 2018, 36, 1036-1037.	0.3	2
122	Disentangling the Association of Hydroxychloroquine Treatment with Mortality in Covid-19 Hospitalized Patients through Hierarchical Clustering. Journal of Healthcare Engineering, 2021, 2021, 1-10.	1.1	2
123	Response to Endothelial Nitric Oxide Synthase, Cyclooxygenase-2, and Essential Hypertension: Is There an Interaction?. Hypertension, 2013, 62, e16.	1.3	1
124	Endothelial Function. Updates in Hypertension and Cardiovascular Protection, 2018, , 127-134.	0.1	1
125	Investing in your arteries by spending more time in education. European Journal of Preventive Cardiology, 2019, 26, 1092-1095.	0.8	1
126	Arterial Hypertension and Cardiopulmonary Function: The Value of a Combined Cardiopulmonary and Echocardiography Stress Test. High Blood Pressure and Cardiovascular Prevention, 2022, 29, 145.	1.0	1

#	Article	IF	CITATIONS
127	Uric acid and cardiovascular risk stratification in the acute coronary syndromes: a friend we should mind. European Journal of Internal Medicine, 2022, 99, 22-23.	1.0	1
128	Different Kinetics of HBV-DNA and HBsAg in HCV Coinfected Patients during DAAs Therapy. Journal of Clinical Medicine, 2022, 11, 1406.	1.0	1
129	Is Endothelial Dysfunction a Measurable Endpoint in Hypertension?. High Blood Pressure and Cardiovascular Prevention, 2003, 10, 19-25.	1.0	0
130	Response to Letter Regarding Article, "Effect of Sulfaphenazole on Tissue Plasminogen Activator Release in Normotensive Subjects and Hypertensive Patients― Circulation, 2009, 120, .	1.6	0
131	Does skin microcirculation represent a faithful mirror of uric acid alterations?. Journal of Hypertension, 2015, 33, 1531-1532.	0.3	Ο
132	Use of Fixed Combination Therapies to Improve Blood Pressure Control in the Clinical Management of Hypertension: A Key Opportunity. High Blood Pressure and Cardiovascular Prevention, 2015, 22, 427-428.	1.0	0
133	Statin guidelines: Friend or foes?. European Journal of Preventive Cardiology, 2018, 25, 867-869.	0.8	Ο
134	Cardiac remodeling and vascular changes: Same music with a new instrument. International Journal of Cardiology, 2019, 280, 160-161.	0.8	0
135	Vascular effect of bevacizumab: is it too early to draw conclusions?. Journal of Hypertension, 2020, 38, 201-202.	0.3	0
136	OUP accepted manuscript. European Heart Journal, 2022, 43, 442-444.	1.0	0
137	The flavonoid compound luteolin prevents endothelial dysfunction in a mouse model of high fat diet-induced obesity. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-2-47.	0.0	0
138	Microvascular Endothelial Dysfunction in Hypertension. Updates in Hypertension and Cardiovascular Protection, 2020, , 95-101.	0.1	0