
Omid Arjmandi-Tash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of Wetting and Spreading of Droplets over Various Substrates. Langmuir, 2017, 33, 4367-4385.	1.6	55
2	Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Journal of Colloid and Interface Science, 2017, 505, 315-324.	5.0	54
3	Surfactant-enhanced spreading: Experimental achievements and possible mechanisms. Advances in Colloid and Interface Science, 2016, 233, 155-160.	7.0	46
4	Spreading of blood drops over dry porous substrate: Complete wetting case. Journal of Colloid and Interface Science, 2015, 446, 218-225.	5.0	26
5	Foam drainage placed on a porous substrate. Soft Matter, 2015, 11, 3643-3652.	1.2	23
6	Biological applications of kinetics of wetting and spreading. Advances in Colloid and Interface Science, 2017, 249, 17-36.	7.0	22
7	Foams built up by non-Newtonian polymeric solutions: Free drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 112-120.	2.3	19
8	Simultaneous spreading and imbibition of blood droplets over porous substrates in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 9-17.	2.3	17
9	Dominant Flow Structures in Gas–Solid Fluidized Beds Using Time and Frequency Domains Analyses. Particulate Science and Technology, 2014, 32, 498-505.	1.1	11
10	Foam drainage placed on a thin porous layer. Soft Matter, 2019, 15, 5331-5344.	1.2	11
11	Interaction of liquid foams with porous substrates. Current Opinion in Colloid and Interface Science, 2019, 39, 212-219.	3.4	11
12	Numerical investigation of pulsatile blood flow in a bifurcation model with a non-planar branch: the effect of different bifurcation angles and non-planar branch. BioImpacts, 2012, 2, 195-205.	0.7	11
13	Wetting properties of cosmetic polymeric solutions on hair tresses. Colloids and Interface Science Communications, 2015, 9, 12-15.	2.0	10
14	Possibility of atherosclerosis in an arterial bifurcation model. BioImpacts, 2011, 1, 225-8.	0.7	10
15	Drying of Foam under Microgravity Conditions. Microgravity Science and Technology, 2019, 31, 589-601.	0.7	9
16	Equilibrium of droplets on a deformable substrate: Influence of disjoining pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 3-12.	2.3	7
17	Dominant flow structures in gas–liquid–solid fluidized beds. Canadian Journal of Chemical Engineering, 2015, 93, 942-950.	0.9	5
18	A new mathematical model for nucleation of spherical agglomerates by the immersion mechanism. Chemical Engineering Science: X, 2019, 4, 100048.	1.5	5

#	Article	IF	CITATIONS
19	A novel method for the analysis of particle coating behaviour via contact spreading in a tumbling drum: Effect of coating liquid viscosity. Powder Technology, 2019, 351, 102-114.	2.1	3
20	Characterization of gas–liquid–solid fluidized beds by S statistics. Particuology, 2016, 29, 135-142.	2.0	1