Murilo C Crovace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742736/publications.pdf

Version: 2024-02-01

34 papers

772 citations

16 h-index 501196 28 g-index

34 all docs

34 docs citations

times ranked

34

1066 citing authors

#	Article	IF	CITATIONS
1	Biosilicate $\hat{A}^{@}$ \hat{a} \in " A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 2016, 432, 90-110.	3.1	130
2	Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Acta Biomaterialia, 2013, 9, 5728-5739.	8.3	54
3	Effect of 830 nm Laser Phototherapy on Osteoblasts Grown <i>In Vitro</i> on Biosilicate [®] Scaffolds. Photomedicine and Laser Surgery, 2010, 28, 131-133.	2.0	53
4	Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses. Journal of Non-Crystalline Solids, 2013, 382, 57-65.	3.1	50
5	Characterization and <i>In Vivo </i> Biological Performance of Biosilicate. BioMed Research International, 2013, 2013, 1-7.	1.9	46
6	Surface and bulk residual stresses in Li2O·2SiO2 glass–ceramics. Journal of Non-Crystalline Solids, 2007, 353, 2307-2317.	3.1	42
7	Incorporation of bioactive glass in calcium phosphate cement: Material characterization and <i>in vitro</i> degradation. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2365-2373.	4.0	41
8	Biosilicate [®] –gelatine bone scaffolds by the foam replica technique: development and characterization. Science and Technology of Advanced Materials, 2013, 14, 045008.	6.1	41
9	Effects of Biosilicate [®] Scaffolds and Low-Level Laser Therapy on the Process of Bone Healing. Photomedicine and Laser Surgery, 2013, 31, 252-260.	2.0	34
10	Histopathological, cytotoxicity and genotoxicity evaluation of Biosilicate® glass–ceramic scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 667-673.	4.0	33
11	Biosilicate [®] scaffolds produced by 3Dâ€printing and direct foaming using preceramic polymers. Journal of the American Ceramic Society, 2019, 102, 1010-1020.	3. 8	32
12	Bioactive magnetic glass-ceramics for cancer treatment. Biomedical Glasses, 2019, 5, 148-177.	2.4	24
13	Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO·P2O5–SiO2–MgO system. Journal of Materials Science: Materials in Medicine, 2013, 24, 2171-2180.	3.6	22
14	Suitability of Biosilicate® glass-ceramic powder for additive manufacturing of highly porous scaffolds. Ceramics International, 2021, 47, 8200-8207.	4.8	20
15	New, tough and strong lithium metasilicate dental glass-ceramic. Ceramics International, 2021, 47, 2793-2801.	4.8	18
16	Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. Biomedical Materials (Bristol), 2015, 10, 035003.	3.3	17
17	Understanding the mixed alkali effect on the sinterability and in vitro performance of bioactive glasses. Journal of the European Ceramic Society, 2021, 41, 4391-4405.	5 . 7	16
18	Influence of Particle Size on Nonisothermal Crystallization in a Lithium Disilicate Glass. Journal of the American Ceramic Society, 2015, 98, 774-780.	3.8	14

#	Article	IF	CITATIONS
19	Porous poly (D,L â€lactide―co â€glycolide) acid/biosilicate ® composite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 63-71.	3.4	14
20	Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats. Journal of Materials Science: Materials in Medicine, 2015, 26, 74.	3.6	12
21	Bioactive-glass ceramic with two crystalline phases (BioS-2P) for bone tissue engineering. Biomedical Materials (Bristol), 2017, 12, 045018.	3.3	11
22	Bioactive glassâ€based surfaces induce differential gene expression profiling of osteoblasts. Journal of Biomedical Materials Research - Part A, 2017, 105, 419-423.	4.0	9
23	Biosilicate $\hat{A}^{\text{@}}$ Glass-Ceramic Foams From Refined Alkali Activation and Gel Casting. Frontiers in Materials, 2021, 7, .	2.4	8
24	Putty-like bone fillers based on CaP ceramics or Biosilicate® combined with carboxymethylcellulose: Characterization, optimization, and evaluation. Journal of Biomaterials Applications, 2017, 32, 276-288.	2.4	5
25	New engineered stones: Development and characterization of mineral-glass composites. Composites Part B: Engineering, 2019, 167, 556-565.	12.0	5
26	Effect of bioactive Biosilicate $<$ sup $>$ \hat{A}^{\otimes} $<$ /sup $>$ /F18 glass scaffolds on osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2021, 109, 1293-1308.	4.0	5
27	Effect of 830-nm Laser Phototherapy on Olfactory Neuronal Ensheathing Cells Grown in Vitro on Novel Bioscaffolds. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 234-240.	1.6	3
28	Scaffolds of bioactive glass-ceramic (Biosilicate $\hat{A}^{@}$) and bone healing: A biological evaluation in an experimental model of tibial bone defect in rats. Bio-Medical Materials and Engineering, 2018, 29, 665-683.	0.6	3
29	Competent F18 bioglass-Biosilicate® bone graft scaffold substitutes. Journal of the European Ceramic Society, 2021, 41, 7910-7920.	5.7	3
30	Two-step sinter-crystallization of K2O–CaO–P2O5–SiO2 (45S5-K) bioactive glass. Ceramics International, 2021, 47, 18720-18731.	4.8	2
31	Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Brazilian Oral Research, 2022, 36, e022.	1.4	2
32	Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia. Materials, 2022, 15, 3187.	2.9	2
33	Use of Biosilicate \hat{A}^{\otimes} to Treat Bone Defects due to Periapical Disease: A Case Report. Dental Health Current Research, 2017, 03, .	0.1	1
34	Bioactivity of Ti6Al4V alloy with bioglass and corrosion protection by silane coating. Research, Society and Development, 2021, 10, e23310615308.	0.1	0