
Thomas J Hureau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742706/publications.pdf Version: 2024-02-01

THOMAS | HUDEAU

#	Article	IF	CITATIONS
1	The â€~sensory tolerance limit': A hypothetical construct determining exercise performance?. European Journal of Sport Science, 2018, 18, 13-24.	2.7	146
2	Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. Journal of Physiology, 2016, 594, 5303-5315.	2.9	127
3	Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Experimental Physiology, 2014, 99, 951-963.	2.0	67
4	Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints. Medicine and Science in Sports and Exercise, 2016, 48, 391-401.	0.4	58
5	Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Journal of Applied Physiology, 2017, 122, 1208-1217.	2.5	50
6	Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. Journal of Physiology, 2018, 596, 2301-2314.	2.9	36
7	Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.	0.4	34
8	Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. Journal of Applied Physiology, 2019, 127, 1257-1266.	2.5	31
9	The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. Journal of Physiology, 2020, 598, 2311-2321.	2.9	29
10	Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. Journal of Physiology, 2018, 596, 1373-1384.	2.9	27
11	Bioenergetics and ATP Synthesis during Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 2404-2413.	0.4	23
12	Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1896-1907.	7.3	23
13	On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A ³¹ Pâ€MRS study. Journal of Physiology, 2022, 600, 3069-3081.	2.9	23
14	Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Experimental Gerontology, 2018, 111, 154-161.	2.8	20
15	Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Frontiers in Cell and Developmental Biology, 2021, 9, 719643.	3.7	19
16	Physiological factors determining downhill vs uphill running endurance performance. Journal of Science and Medicine in Sport, 2021, 24, 85-91.	1.3	18
17	Trail Runners Cannot Reach V˙O2max during a Maximal Incremental Downhill Test. Medicine and Science in Sports and Exercise, 2020, 52, 1135-1143.	0.4	17
18	Increased Fatigue Response to Augmented Deceptive Feedback during Cycling Time Trial. Medicine and Science in Sports and Exercise, 2017, 49, 1541-1551.	0.4	15

THOMAS J HUREAU

#	Article	IF	CITATIONS
19	Recovery from Fatigue after Cycling Time Trials in Elite Endurance Athletes. Medicine and Science in Sports and Exercise, 2021, 53, 904-917.	0.4	15
20	Impact of age on the development of fatigue during large and small muscle mass exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R741-R750.	1.8	14
21	Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H338-H351.	3.2	13
22	Limitation of fatigue and performance during exercise: the brain–muscle interaction. Experimental Physiology, 2017, 102, 3-4.	2.0	10
23	Commentaries on Viewpoint: Distinct modalities of eccentric exercise: different recipes, not the same dish. Journal of Applied Physiology, 2019, 127, 884-891.	2.5	10
24	Centrallyâ€mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the forceâ€duration relationship in older men. European Journal of Sport Science, 2020, 20, 641-649.	2.7	10
25	Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2269-2277.	3.6	10
26	The mechanistic basis of the power–time relationship: potential role of the group III/IV muscle afferents. Journal of Physiology, 2016, 594, 7165-7166.	2.9	9
27	High-intensity downhill running exacerbates heart rate and muscular fatigue in trail runners. Journal of Sports Sciences, 2021, 39, 815-825.	2.0	9
28	Similar Cardioventilatory but Greater Neuromuscular Stimuli With Interval Drop Jump Than With Interval Running. International Journal of Sports Physiology and Performance, 2020, 15, 330-339.	2.3	8
29	Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. Journal of Applied Physiology, 2021, 130, 69-79.	2.5	8
30	On the implication of dietary nitrate supplementation for the hemodynamic and fatigue response to cycling exercise. Journal of Applied Physiology, 2021, 131, 1691-1700.	2.5	8
31	Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R617-R625.	1.8	7
32	Small-Sided Games Are Not as Effective as Intermittent Running to Stimulate Aerobic Metabolism in Prepubertal Soccer Players. International Journal of Sports Physiology and Performance, 2021, 16, 273-279.	2.3	6
33	Identifying sex differences in neuromuscular fatigue: the challenge of normalizing exercise intensity and interpreting the results between populations. Journal of Physiology, 2021, 599, 2801-2802.	2.9	6
34	Commentaries on Viewpoint: Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning?. Journal of Applied Physiology, 2017, 122, 721-725.	2.5	5
35	Evolution of Physical Status From Diagnosis to the End of First-Line Treatment in Breast, Lung, and Colorectal Cancer Patients: The PROTECT-01 Cohort Study Protocol. Frontiers in Oncology, 2020, 10, 1304.	2.8	5
36	Energy Cost of Running in Well-Trained Athletes: Toward Slope-Dependent Factors. International Journal of Sports Physiology and Performance, 2022, 17, 423-431.	2.3	4

THOMAS J HUREAU

#	Article	IF	CITATIONS
37	The relationship between <i>W</i> ′ and peripheral fatigue considered. Experimental Physiology, 2020, 105, 211-212.	2.0	3
38	Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R687-R698.	1.8	3
39	Impact of aging on the work of breathing during exercise in healthy men. Journal of Applied Physiology, 2022, 132, 689-698.	2.5	3
40	Response. Medicine and Science in Sports and Exercise, 2018, 50, 1719-1719.	0.4	1
41	Commentaries on Viewpoint: Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. Journal of Applied Physiology, 2018, 124, 529-535.	2.5	1
42	Effect Of Dietary Nitrate Supplementation On The Development Of Neuromuscular Fatigue During Whole Body Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 1090-1091.	0.4	0
43	Skeletal Muscle Force Production and Bioenergetics During All-out Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 903.	0.4	0
44	Ascorbate Attenuates the Development of Fatigue During Exercise in Patients with Chronic Obstructive Pulmonary Disease. Medicine and Science in Sports and Exercise, 2016, 48, 284.	0.4	0
45	Impact of Aging on Inspiratory and Expiratory Work during Exercise. FASEB Journal, 2018, 32, 855.10.	0.5	0
46	Effect of Intra-Venous Antioxidant Infusion on the Development of Neuromuscular Fatigue During Whole Body Exercise in Hypertensive Middle-Age Individuals. Medicine and Science in Sports and Exercise, 2018, 50, 235.	0.4	0