
Liisa K Selin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742648/publications.pdf Version: 2024-02-01

LUCA K SELIN

#	Article	IF	CITATIONS
1	Natural killer cells act as rheostats modulating antiviral T cells. Nature, 2012, 481, 394-398.	13.7	542
2	A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends in Immunology, 2013, 34, 431-439.	2.9	455
3	No one is naive: the significance of heterologous T-cell immunity. Nature Reviews Immunology, 2002, 2, 417-426.	10.6	429
4	Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses Journal of Experimental Medicine, 1994, 179, 1933-1943.	4.2	315
5	Heterologous immunity between viruses. Immunological Reviews, 2010, 235, 244-266.	2.8	272
6	Attrition of T Cell Memory. Immunity, 1999, 11, 733-742.	6.6	261
7	Protective Heterologous Antiviral Immunity and Enhanced Immunopathogenesis Mediated by Memory T Cell Populations. Journal of Experimental Medicine, 1998, 188, 1705-1715.	4.2	249
8	Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nature Immunology, 2001, 2, 1067-1076.	7.0	236
9	T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nature Immunology, 2002, 3, 627-634.	7.0	236
10	Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections Journal of Experimental Medicine, 1996, 183, 2489-2499.	4.2	202
11	ImmunologicalMemory toViralInfections. Annual Review of Immunology, 2004, 22, 711-743.	9.5	191
12	Memory of mice and men: CD8 + Tâ€cell crossâ€reactivity and heterologous immunity. Immunological Reviews, 2006, 211, 164-181.	2.8	168
13	Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis. Journal of Clinical Investigation, 2005, 115, 3602-3612.	3.9	145
14	Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. Journal of Clinical Investigation, 2006, 116, 1443-1456.	3.9	126
15	Peripheral blood ?-? T cells lyse fresh human brain?Derived oligodendrocytes. Annals of Neurology, 1991, 30, 794-800.	2.8	124
16	Private specificities of CD8 T cell responses control patterns of heterologous immunity. Journal of Experimental Medicine, 2005, 201, 523-533.	4.2	121
17	Specific History of Heterologous Virus Infections Determines Anti-Viral Immunity and Immunopathology in the Lung. American Journal of Pathology, 2003, 163, 1341-1355.	1.9	112
18	CD8 memory T cells: cross-reactivity and heterologous immunity. Seminars in Immunology, 2004, 16, 335-347.	2.7	112

#	Article	IF	CITATIONS
19	Innate Immunity to Viruses: Control of Vaccinia Virus Infection by γδT Cells. Journal of Immunology, 2001, 166, 6784-6794.	0.4	109
20	IFN-Induced Attrition of CD8 T Cells in the Presence or Absence of Cognate Antigen during the Early Stages of Viral Infections. Journal of Immunology, 2006, 176, 4284-4295.	0.4	108
21	Plasticity of T Cell Memory Responses to Viruses. Immunity, 2004, 20, 5-16.	6.6	104
22	Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nature Structural and Molecular Biology, 2017, 24, 395-406.	3.6	87
23	A Fractal Clonotype Distribution in the CD8+ Memory T Cell Repertoire Could Optimize Potential for Immune Responses. Journal of Immunology, 2003, 170, 3994-4001.	0.4	85
24	Dynamics of Memory T Cell Proliferation Under Conditions of Heterologous Immunity and Bystander Stimulation. Journal of Immunology, 2002, 169, 90-98.	0.4	84
25	Clonal Exhaustion as a Mechanism to Protect Against Severe Immunopathology and Death from an Overwhelming CD8 T Cell Response. Frontiers in Immunology, 2013, 4, 475.	2.2	83
26	Virus-Specific CD8 T Cells in Peripheral Tissues Are More Resistant to Apoptosis Than Those in Lymphoid Organs. Immunity, 2003, 18, 631-642.	6.6	80
27	alphabeta and gammadelta T-cell networks and their roles in natural resistance to viral infections. Immunological Reviews, 1997, 159, 79-93.	2.8	78
28	CD8 T Cell Cross-Reactivity Networks Mediate Heterologous Immunity in Human EBV and Murine Vaccinia Virus Infections. Journal of Immunology, 2010, 184, 2825-2838.	0.4	75
29	Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans. PLoS Pathogens, 2010, 6, e1001051.	2.1	72
30	Narrowing of Human Influenza A Virus-Specific T Cell Receptor α and β Repertoires with Increasing Age. Journal of Virology, 2015, 89, 4102-4116.	1.5	72
31	Broad Cross-Reactive TCR Repertoires Recognizing Dissimilar Epstein-Barr and Influenza A Virus Epitopes. Journal of Immunology, 2010, 185, 6753-6764.	0.4	57
32	Heterologous immunity: Immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, 44, 328-347.	1.2	57
33	Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1210.	2.2	50
34	Independent Regulation of Lymphocytic Choriomeningitis Virus-Specific T Cell Memory Pools: Relative Stability of CD4 Memory Under Conditions of CD8 Memory T Cell Loss. Journal of Immunology, 2001, 166, 1554-1561.	0.4	47
35	Vaccination and heterologous immunity: educating the immune system. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 62-69.	0.7	42
36	Specificity and editing by apoptosis of virus-induced cytotoxic T lymphocytes. Current Opinion in Immunology, 1994, 6, 553-559.	2.4	38

#	Article	IF	CITATIONS
37	Multiple Glycines in TCR α-Chains Determine Clonally Diverse Nature of Human T Cell Memory to Influenza A Virus. Journal of Immunology, 2008, 181, 7407-7419.	0.4	38
38	Anti–IFN-γ and Peptide-Tolerization Therapies Inhibit Acute Lung Injury Induced by Cross-Reactive Influenza A–Specific Memory T Cells. Journal of Immunology, 2013, 190, 2736-2746.	0.4	36
39	Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. MBio, 2017, 8, .	1.8	36
40	Complex T Cell Memory Repertoires Participate in Recall Responses at Extremes of Antigenic Load. Journal of Immunology, 2006, 177, 2006-2014.	0.4	35
41	Frontiers in Nephrology: Heterologous Immunity, T Cell Cross-Reactivity, and Alloreactivity. Journal of the American Society of Nephrology: JASN, 2007, 18, 2268-2277.	3.0	35
42	A DNA Vaccine Prime Followed by a Liposome-Encapsulated Protein Boost Confers Enhanced Mucosal Immune Responses and Protection. Journal of Immunology, 2008, 180, 6159-6167.	0.4	35
43	Protection against Vaccinia Virus Challenge by CD8 Memory T Cells Resolved by Molecular Mimicry. Journal of Virology, 2007, 81, 934-944.	1.5	34
44	Evolution of the CD8 T-cell repertoire during infections11Address for correspondence: Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA Microbes and Infection, 2000, 2, 1025-1039.	1.0	33
45	Consequences of Cross-Reactive and Bystander CTL Responses during Viral Infections. Virology, 2000, 270, 4-8.	1.1	33
46	CD8 T cell responses to viral infections in sequence. Cellular Microbiology, 2004, 6, 411-421.	1.1	33
47	Role of apoptosis in the regulation of virus-induced T cell responses, immune suppression, and memory. Journal of Cellular Biochemistry, 1995, 59, 135-142.	1.2	30
48	Loss of Anti-Viral Immunity by Infection with a Virus Encoding a Cross-Reactive Pathogenic Epitope. PLoS Pathogens, 2012, 8, e1002633.	2.1	29
49	Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection. Journal of Virology, 2018, 92, .	1.5	28
50	Pathological Features of Heterologous Immunity Are Regulated by the Private Specificities of the Immune Repertoire. American Journal of Pathology, 2010, 176, 2107-2112.	1.9	26
51	Innate PLZF+CD4+ αβ T Cells Develop and Expand in the Absence of Itk. Journal of Immunology, 2014, 193, 673-687.	0.4	24
52	Increased Immune Response Variability during Simultaneous Viral Coinfection Leads to Unpredictability in CD8 T Cell Immunity and Pathogenesis. Journal of Virology, 2015, 89, 10786-10801.	1.5	23
53	High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis. Journal of Virology, 2017, 91, .	1.5	23

54 Attrition of memory CD8 T cells. Nature, 2009, 459, E3-E4.

13.7 21

#	Article	IF	CITATIONS
55	Changing oral vaccine to inactivated polio vaccine might increase mortality. Lancet, The, 2016, 387, 1054-1055.	6.3	21
56	CDR3αÂdrives selection of the immunodominant Epstein Barr virus (EBV) BRLF1-specific CD8 T cell receptor repertoire in primary infection. PLoS Pathogens, 2019, 15, e1008122.	2.1	21
57	Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathogens, 2017, 13, e1006544.	2.1	19
58	A discrete computer model of the immune system reveals competitive interactions between the humoral and cellular branch and between cross-reacting memory and naÃ ⁻ ve responses. Vaccine, 2009, 27, 833-845.	1.7	18
59	Evaluation of non-reciprocal heterologous immunity between unrelated viruses. Virology, 2015, 482, 89-97.	1.1	18
60	Unique influenza AÂcross-reactive memory CD8 T-cell receptor repertoire has a potential to protect against EBV seroconversion. Journal of Allergy and Clinical Immunology, 2017, 140, 1206-1210.	1.5	17
61	Epstein-Barr Virus Epitope–Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor α and β Repertoires. MBio, 2020, 11, .	1.8	17
62	A mucosal vaccination approach for herpes simplex virus type 2. Vaccine, 2011, 29, 1090-1098.	1.7	16
63	PC61 (Anti-CD25) Treatment Inhibits Influenza A Virus-Expanded Regulatory T Cells and Severe Lung Pathology during a Subsequent Heterologous Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2013, 87, 12636-12647.	1.5	15
64	Regulatory T Cells Resist Virus Infection-Induced Apoptosis. Journal of Virology, 2015, 89, 2112-2120.	1.5	15
65	Heterologous Immunity and Persistent Murine Cytomegalovirus Infection. Journal of Virology, 2017, 91, .	1.5	14
66	Lymphocyte-dependent â€~natural' immunity to virus infections mediated by both natural killer cells and memory T cells. Seminars in Virology, 1996, 7, 95-102.	4.1	12
67	Resistance to Vaccinia Virus Is Less Dependent on TNF under Conditions of Heterologous Immunity. Journal of Immunology, 2009, 183, 6554-6560.	0.4	12
68	Epitope Specificity and Relative Clonal Abundance Do Not Affect CD8 Differentiation Patterns during Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2009, 83, 11795-11807.	1.5	11
69	NEONATAL HERPES SIMPLEX VIRUS INFECTION IN MANITOBA, 1980 TO 1986, AND IMPLICATIONS FOR PREVENTIVE STRATEGIES. Pediatric Infectious Disease Journal, 1988, 7, 733.	1.1	10
70	Bi-specific MHC Heterodimers for Characterization of Cross-reactive T Cells*. Journal of Biological Chemistry, 2010, 285, 33144-33153.	1.6	9
71	SwarmTCR: a computational approach to predict the specificity of T cell receptors. BMC Bioinformatics, 2021, 22, 422.	1.2	9
72	An unexpected increase in pituitary sensitivity to gonadotropin releasing hormone after treatment with porcine follicular fluid (inhibin) in immature hemicastrate rats. Canadian Journal of Physiology and Pharmacology, 1980, 58, 220-222.	0.7	8

#	Article	IF	CITATIONS
73	Systematic simulation of cross-reactivity predicts ambiguity in Tk memory: It may save lives of the infected, but limits specificities vital for further responses. Autoimmunity, 2011, 44, 315-327.	1.2	5
74	Heterologous immunity and the CD8 T cell network. Seminars in Immunopathology, 2002, 24, 149-168.	4.0	4
75	Embedding T cells in the matrix. Nature Medicine, 2004, 10, 343-345.	15.2	4
76	Exceptional Sequences Determined by their Cartan Matrix. Algebras and Representation Theory, 2002, 5, 201-209.	0.4	3
77	Computer simulations of heterologous immunity: Highlights of an interdisciplinary cooperation. Autoimmunity, 2011, 44, 304-314.	1.2	3
78	Lymphocyte effector functions. Current Opinion in Immunology, 2004, 16, 257-258.	2.4	2
79	T cells in the brain enhance neonatal mortality during peripheral LCMV infection. PLoS Pathogens, 2021, 17, e1009066.	2.1	2
80	Comparison of Norfloxacin Versus Nalidixic Acid in Therapy of Acute Urinary Tract Infections. Canadian Journal of Infectious Diseases & Medical Microbiology, 1990, 1, 35-40.	0.3	1
81	Editorial overview: Viral immunology. Current Opinion in Virology, 2016, 16, vii-ix.	2.6	0
82	Modulation of CD4+Foxp3+ regulatory T cell responses in the lung during an acute heterologous LCMV infection in influenzaâ€immune mice. FASEB Journal, 2008, 22, 848.28.	0.2	0
83	Protection From Epsteinâ€Barr Virus (EBV) Infection Mediated by Heterologous Immunity. FASEB Journal, 2008, 22, 512-512.	0.2	0
84	Biâ€specific MHC Heterodimers for Characterization of Crossâ€reactive T Cells. FASEB Journal, 2011, 25, .	0.2	0
85	T cells in the brain enhance neonatal mortality during peripheral LCMV infection. , 2021, 17, e1009066.		0
86	T cells in the brain enhance neonatal mortality during peripheral LCMV infection. , 2021, 17, e1009066.		0
87	T cells in the brain enhance neonatal mortality during peripheral LCMV infection. , 2021, 17, e1009066.		0
88	T cells in the brain enhance neonatal mortality during peripheral LCMV infection. , 2021, 17, e1009066.		0