Denys Yemshanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742428/publications.pdf

Version: 2024-02-01

73 papers 1,943 citations

257450 24 h-index 289244 40 g-index

74 all docs

74 docs citations

74 times ranked 1919 citing authors

#	Article	IF	CITATIONS
1	Exploring the tradeoffs among forest planning, roads and wildlife corridors: a new approach. Optimization Letters, 2022, 16, 747-788.	1.6	6
2	Optimal restoration of wildlife habitat in landscapes fragmented by resource extraction: a network flow modeling approach. Restoration Ecology, 2022, 30, e13580.	2.9	3
3	Finding the perfect mix: An applied model that integrates multiple ecosystem functions when designing restoration programs. Ecological Engineering, 2022, 180, 106646.	3.6	6
4	Optimizing surveillance and management of emerald ash borer in urban environments. Natural Resource Modelling, 2021, 34, .	2.0	16
5	Protecting wildlife habitat in managed forest landscapes—How can network connectivity models help?. Natural Resource Modelling, 2021, 34, e12286.	2.0	7
6	Economics of Invasive Species. , 2021, , 305-320.		14
7	Balancing Large-Scale Wildlife Protection and Forest Management Goals with a Game-Theoretic Approach. Forests, 2021, 12, 809.	2.1	4
8	Optimizing the location of watercraft inspection stations to slow the spread of aquatic invasive species. Biological Invasions, 2021, 23, 3907-3919.	2.4	10
9	The Role of International Cooperation in Invasive Species Research. , 2021, , 293-303.		1
10	Early Intervention Strategies for Invasive Species Management: Connections Between Risk Assessment, Prevention Efforts, Eradication, and Other Rapid Responses., 2021,, 111-131.		5
11	Detecting critical nodes in forest landscape networks to reduce wildfire spread. PLoS ONE, 2021, 16, e0258060.	2.5	6
12	Potential Economic Impacts of the Asian Longhorned Beetle (Coleoptera: Cerambycidae) in Eastern Canada. Journal of Economic Entomology, 2020, 113, 839-850.	1.8	21
13	Go big or go home: A model-based assessment of general strategies to slow the spread of forest pests via infested firewood. PLoS ONE, 2020, 15, e0238979.	2.5	7
14	Optimal planning of multiâ€day invasive species surveillance campaigns. Ecological Solutions and Evidence, 2020, 1, e12029.	2.0	2
15	Optimal invasive species surveillance in the real world: practical advances from research. Emerging Topics in Life Sciences, 2020, 4, 513-520.	2.6	9
16	Biosurveillance of forest insects: part lâ€"integration and application of genomic tools to the surveillance of non-native forest insects. Journal of Pest Science, 2019, 92, 51-70.	3.7	35
17	Biosurveillance of forest insects: part Ilâ€"adoption of genomic tools by end user communities and barriers to integration. Journal of Pest Science, 2019, 92, 71-82.	3.7	20
18	Acceptance sampling for cost-effective surveillance of emerald ash borer in urban environments. Forestry, 2019, , .	2.3	4

#	Article	IF	Citations
19	Managing biological invasions in urban environments with the acceptance sampling approach. PLoS ONE, 2019, 14, e0220687.	2.5	5
20	Optimizing surveillance strategies for early detection of invasive alien species. Ecological Economics, 2019, 162, 87-99.	5.7	21
21	Prioritizing restoration of fragmented landscapes for wildlife conservation: A graph-theoretic approach. Biological Conservation, 2019, 232, 173-186.	4.1	14
22	Modeling urban distributions of host trees for invasive forest insects in the eastern and central USA: A three-step approach using field inventory data. Forest Ecology and Management, 2018, 417, 222-236.	3.2	14
23	Comparing Alternative Biomass Supply Options for Canada: What Story Do Cost Curves Tell?. BioResources, 2018, 13, .	1.0	3
24	Renewable Energy from Forest Residuesâ€"How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests, 2018, 9, 79.	2.1	8
25	Mapping risks of pest invasions based on the spatio-temporal distribution of hosts. Management of Biological Invasions, 2018, 9, 115-126.	1.2	3
26	A Spatial Real Options Approach for Modeling Land Use Change: Assessing the Potential for Poplar Energy Plantations in Alberta. Canadian Journal of Agricultural Economics, 2017, 65, 271-292.	2.1	8
27	A new hypervolume approach for assessing environmental risks. Journal of Environmental Management, 2017, 193, 188-200.	7.8	2
28	Robust Surveillance and Control of Invasive Species Using a Scenario Optimization Approach. Ecological Economics, 2017, 133, 86-98.	5.7	33
29	A safety rule approach to surveillance and eradication of biological invasions. PLoS ONE, 2017, 12, e0181482.	2.5	11
30	Optimal allocation of invasive species surveillance with the maximum expected coverage concept. Diversity and Distributions, 2015, 21, 1349-1359.	4.1	17
31	Assessing land clearing potential in the Canadian agriculture–forestry interface with a multi-attribute frontier approach. Ecological Indicators, 2015, 54, 71-81.	6.3	7
32	Managing outbreaks of invasive species – A new method to prioritize preemptive quarantine efforts across large geographic regions. Journal of Environmental Management, 2015, 150, 367-377.	7.8	6
33	A real options-net present value approach to assessing land use change: A case study of afforestation in Canada. Forest Policy and Economics, 2015, 50, 327-336.	3.4	34
34	Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel. PLoS ONE, 2014, 9, e102105.	2.5	42
35	Non-native species in Canada's boreal zone: diversity, impacts, and risk. Environmental Reviews, 2014, 22, 372-420.	4.5	37
36	Cost estimates of post harvest forest biomass supply for Canada. Biomass and Bioenergy, 2014, 69, 80-94.	5.7	42

#	Article	IF	CITATIONS
37	Enhancing the adoption of short rotation woody crops for bioenergy production. Biomass and Bioenergy, 2014, 64, 363-366.	5.7	13
38	There is no silver bullet: The value of diversification in planning invasive species surveillance. Ecological Economics, 2014, 104, 61-72.	5.7	57
39	Potential and impacts of renewable energy production from agricultural biomass in Canada. Applied Energy, 2014, 130, 222-229.	10.1	58
40	A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept. Risk Analysis, 2013, 33, 1694-1709.	2.7	24
41	Canadian boreal forests and climate change mitigation. Environmental Reviews, 2013, 21, 293-321.	4.5	120
42	Exploring critical uncertainties in pathway assessments of human-assisted introductions of alien forest species in Canada. Journal of Environmental Management, 2013, 129, 173-182.	7.8	9
43	Mapping ecological risks with a portfolioâ€based technique: incorporating uncertainty and decisionâ€making preferences. Diversity and Distributions, 2013, 19, 567-579.	4.1	16
44	Risks, decisions and biological conservation. Diversity and Distributions, 2013, 19, 485-489.	4.1	17
45	The economic attractiveness of Short Rotation Coppice biomass plantations for bioenergy in Northern Ontario. Forestry Chronicle, 2013, 89, 66-78.	0.6	15
46	Dispersal of Invasive Forest Insects via Recreational Firewood: A Quantitative Analysis. Journal of Economic Entomology, 2012, 105, 438-450.	1.8	40
47	Effects of permanence requirements on afforestation choices for carbon sequestration for Ontario, Canada. Forest Policy and Economics, 2012, 14, 6-18.	3.4	13
48	Modelling the Arrival of Invasive Organisms via the International Marine Shipping Network: A Khapra Beetle Study. PLoS ONE, 2012, 7, e44589.	2.5	30
49	Mapping forest composition from the Canadian National Forest Inventory and land cover classification maps. Environmental Monitoring and Assessment, 2012, 184, 4655-4669.	2.7	21
50	Trade-associated pathways of alien forest insect entries in Canada. Biological Invasions, 2012, 14, 797-812.	2.4	32
51	A dominanceâ€based approach to map risks of ecological invasions in the presence of severe uncertainty. Diversity and Distributions, 2012, 18, 33-46.	4.1	33
52	Estimates of the Potential Cost of Emerald Ash Borer (Agrilus planipennis Fairmaire) in Canadian Municipalities. Arboriculture and Urban Forestry, 2012, 38, 81-91.	0.6	45
53	Risk maps for targeting exotic plant pest detection programs in the United States. EPPO Bulletin, 2011, 41, 46-56.	0.8	31
54	Potential establishment of alien-invasive forest insect species in the United States: where and how many?. Biological Invasions, 2011, 13, 969-985.	2.4	72

#	Article	IF	Citations
55	An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada. Biomass and Bioenergy, 2011, 35, 374-384.	5.7	37
56	A harvest failure approach to assess the threat from an invasive species. Journal of Environmental Management, 2011, 92, 205-213.	7.8	6
57	Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. Journal of Environmental Management, 2010, 91, 2535-2546.	7.8	21
58	Robustness of Risk Maps and Survey Networks to Knowledge Gaps About a New Invasive Pest. Risk Analysis, 2010, 30, 261-276.	2.7	25
59	Pest Risk Maps for Invasive Alien Species: A Roadmap for Improvement. BioScience, 2010, 60, 349-362.	4.9	259
60	A bioeconomic approach to assess the impact of an alien invasive insect on timber supply and harvesting: a case study with Sirex noctilio in eastern Canada. Canadian Journal of Forest Research, 2009, 39, 154-168.	1.7	53
61	Mapping Invasive Species Risks with Stochastic Models: A Crossâ€Border United Statesâ€Canada Application for <i>Sirex noctilio</i> Fabricius. Risk Analysis, 2009, 29, 868-884.	2.7	60
62	Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk. Risk Analysis, 2009, 29, 1227-1241.	2.7	43
63	A bioeconomic model of afforestation in Southern Ontario: Integration of fiber, carbon and municipal biosolids values. Journal of Environmental Management, 2009, 90, 1833-1843.	7.8	14
64	Towards an integrated approach to modelling the risks and impacts of invasive forest species. Environmental Reviews, 2009, 17, 163-178.	4.5	26
65	Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass and Bioenergy, 2008, 32, 185-197.	5.7	92
66	An integrated spatial assessment of the investment potential of three species in southern Ontario, Canada inclusive of carbon benefits. Forest Policy and Economics, 2007, 10, 48-59.	3.4	25
67	Using bioeconomic models to assess research priorities: a case study on afforestation as a carbon sequestration tool. Canadian Journal of Forest Research, 2006, 36, 886-900.	1.7	23
68	Investment Attractiveness of Afforestation in Canada Inclusive of Carbon Sequestration Benefits. Canadian Journal of Agricultural Economics, 2005, 53, 307-323.	2.1	48
69	Cost estimates for carbon sequestration from fast growing poplar plantations in Canada. Forest Policy and Economics, 2004, 6, 345-358.	3.4	67
70	Mapping Risks and Impacts of Invasive Alien Species with Dynamic Simulation Models., 0,, 130-151.		0
71	Assessing the trade-offs between timber supply and wildlife protection goals in boreal landscapes. Canadian Journal of Forest Research, 0, , 243-258.	1.7	6
72	Quantifying uncertainty in pest risk maps and assessments: adopting a risk-averse decision maker's perspective. NeoBiota, 0, 18, 193-218.	1.0	3

 #	Article	IF	CITATIONS
73	Representing uncertainty in a spatial invasion model that incorporates human-mediated dispersal. NeoBiota, 0, 18, 173-191.	1.0	5