Jonas Sjolund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742124/publications.pdf

Version: 2024-02-01

24 papers 1,487 citations

18 h-index 24 g-index

24 all docs

24 docs citations

times ranked

24

3465 citing authors

#	Article	IF	CITATIONS
1	Upregulated functional gene expression programmes in tumour pericytes mark progression in patients with lowâ€grade glioma. Molecular Oncology, 2022, 16, 405-421.	2.1	5
2	Deciphering the temporal heterogeneity of cancer-associated fibroblast subpopulations in breast cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 175.	3 . 5	24
3	Anti-tumor effects of rigosertib in high-risk neuroblastoma. Translational Oncology, 2021, 14, 101149.	1.7	6
4	Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients. International Journal of Molecular Sciences, 2021, 22, 11622.	1.8	41
5	Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Science Translational Medicine, 2020, 12, .	5.8	22
6	Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis, 2019, 22, 117-131.	3.7	38
7	PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nature Communications, 2019, 10, 3589.	5.8	32
8	Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nature Medicine, 2018, 24, 463-473.	15.2	120
9	Tracing Renal Cell Carcinomas back to the Nephron. Trends in Cancer, 2018, 4, 472-484.	3.8	17
10	Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Scientific Reports, 2017, 7, 1334.	1.6	37
11	Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nature Genetics, 2017, 49, 1624-1632.	9.4	47
12	Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes. Cell Reports, 2017, 20, 1476-1489.	2.9	75
13	Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer. Cell Reports, 2016, 16, 1153-1165.	2.9	20
14	Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-Î ² signaling. Oncotarget, 2016, 7, 84314-84325.	0.8	9
15	Identification of Hipk2 as an essential regulator of white fat development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7373-7378.	3.3	38
16	Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biology, 2011, 12, R5.	13.9	41
17	Isolation and Characterization of Progenitor-Like Cells from Human Renal Proximal Tubules. American Journal of Pathology, 2011, 178, 828-837.	1.9	231
18	The Notch and TGF- \hat{l}^2 Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma. PLoS ONE, 2011, 6, e23057.	1.1	56

#	Article	IF	CITATION
19	CRIM1 is localized to the podocyte filtration slit diaphragm of the adult human kidney. Nephrology Dialysis Transplantation, 2009, 24, 2038-2044.	0.4	12
20	$HIF-2\hat{l}\pm$ maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16805-16810.	3.3	131
21	Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. Journal of Clinical Investigation, 2008, 118, 217-228.	3.9	157
22	Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. British Journal of Cancer, 2005, 92, 751-759.	2.9	114
23	Regulation of the Notch target gene Hes-1 by TGFα induced Ras/MAPK signaling in human neuroblastoma cells. Experimental Cell Research, 2005, 310, 218-228.	1.2	89
24	The Notch pathway in cancer: Differentiation gone awry. European Journal of Cancer, 2005, 41, 2620-2629.	1.3	125