Jonathan W Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741730/publications.pdf

Version: 2024-02-01

411340 299063 3,001 56 20 42 citations g-index h-index papers 63 63 63 5473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor treating fields: An emerging treatment modality for thoracic and abdominal cavity cancers. Translational Oncology, 2022, 15, 101296.	1.7	7
2	The Biophysics of Cancer: Emerging Insights from Micro―and Nanoscale Tools. Advanced NanoBiomed Research, 2022, 2, 2100056.	1.7	9
3	DNA origami cell sensors for real time probing of membrane interactions with biomolecules in extracellular matrix. Biophysical Journal, 2022, 121, 152a.	0.2	O
4	cPLA2 blockade attenuates S100A7-mediated breast tumorigenicity by inhibiting the immunosuppressive tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2022, 41, 54.	3.5	23
5	Engineering the extracellular matrix with DNA-based molecular force sensors. Biophysical Journal, 2022, 121, 423a.	0.2	О
6	Molecular sensors for detection of tumor-stroma crosstalk. Advances in Cancer Research, 2022, 154, 47-91.	1.9	1
7	Direct current electric field regulates endothelial permeability under physiologically relevant fluid forces in a microfluidic vessel bifurcation model. Lab on A Chip, 2021, 21, 319-330.	3.1	9
8	Directional Migration of Breast Cancer Cells Hindered by Induced Electric Fields May Be Due to Accompanying Alteration of Metabolic Activity. Bioelectricity, 2021, 3, 92-100.	0.6	1
9	Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate. Biomaterials and Biosystems, 2021, 3, 100020.	1.0	2
10	Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. American Journal of Physiology - Cell Physiology, 2020, 320, C92-C105.	2.1	22
11	Direct Measurement of Fluid Shear Stress in 3-D Matrices using DNA-Based Force Spectroscopy. Biophysical Journal, 2020, 118, 219a.	0.2	0
12	Multiplexed DNA Origami Force Sensors with Programmable Sensitivities. Biophysical Journal, 2020, 118, 617a-618a.	0.2	0
13	The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Frontiers in Immunology, 2020, 11, 598532.	2.2	25
14	In utero estrogenic endocrine disruption alters the stroma to increase extracellular matrix density and mammary gland stiffness. Breast Cancer Research, 2020, 22, 41.	2.2	16
15	Integrated Biophysical Characterization of Fibrillar Collagen-Based Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 1408-1417.	2.6	15
16	Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties. Advanced Healthcare Materials, 2020, 9, e1901399.	3.9	18
17	Microfluidic Prototyping by Xurography to Engineer Fullyâ€lumenized Microvessels In Vitro. FASEB Journal, 2020, 34, 1-1.	0.2	2
18	Electromagnetic fields alter the motility of metastatic breast cancer cells. Communications Biology, 2019, 2, 303.	2.0	24

#	Article	IF	CITATIONS
19	Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model. Micromachines, 2019, 10, 451.	1.4	25
20	Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation, 2019, 26, e12547.	1.0	15
21	Application of 3-D Microfluidic Models for Studying Mass Transport Properties of the Tumor Interstitial Matrix. Frontiers in Bioengineering and Biotechnology, 2019, 7, 6.	2.0	26
22	Functionalizing Cell Membranes with DNA Origami for Multiplexed Biomolecular Sensing. FASEB Journal, 2019, 33, 785.1.	0.2	1
23	Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. Lab on A Chip, 2018, 18, 1084-1093.	3.1	42
24	MAX Mutations in Endometrial Cancer: Clinicopathologic Associations and Recurrent MAX p.His28Arg Functional Characterization. Journal of the National Cancer Institute, 2018, 110, 517-526.	3.0	9
25	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
26	Melanoma-associated mutants within the serine-rich domain of PAK5 direct kinase activity to mitogenic pathways. Oncotarget, 2018, 9, 25386-25401.	0.8	3
27	Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Science Alliance, 2018, 1, e201800190.	1.3	33
28	The Effect of Sphingosine 1â€Phosphate on Endothelial Permeability Is Fluid Flow Dependent. FASEB Journal, 2018, 32, .	0.2	0
29	NONâ€CONTACT ELECTRIC FIELDS POTENTLY HINDER EGF PROMOTED BREAST CANCER MOTILITY BY DOWNREGULATING EGFR PHOSPHORYLATION. FASEB Journal, 2018, 32, .	0.2	0
30	A 3â€D Biomicrofluidic Lymphatic Vessel Analogue for Studying Lymphangiogenesis and Lymphatic Vessel Function. FASEB Journal, 2018, 32, 576.7.	0.2	1
31	Microfluidic approaches to the study of angiogenesis and the microcirculation. Microcirculation, 2017, 24, e12363.	1.0	42
32	Stromal PDGFR-α Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth. Neoplasia, 2017, 19, 496-508.	2.3	50
33	Engineering Cell Surface Function with DNA Origami. Advanced Materials, 2017, 29, 1703632.	11.1	101
34	Cellâ€Membrane Engineering: Engineering Cell Surface Function with DNA Origami (Adv. Mater. 46/2017). Advanced Materials, 2017, 29, .	11.1	1
35	Abstract 5796: Heparan sulfate proteoglycans mediate tumor cell invasion and metastasis. , 2017, , .		0
36	IMST-40. REPROGRAMMING OF THE TUMOR IMMUNE MICROENVIRONMENT BY AN ANG-2/VEGF BISPECIFIC ANTIBODY DELAYS TUMOR GROWTH AND PROLONGS SURVIVAL IN PRECLINICAL GBM MODELS. Neuro-Oncology, 2016, 18, vi95-vi95.	0.6	O

#	Article	IF	Citations
37	Flow-induced HDAC1 phosphorylation and nuclear export in angiogenic sprouting. Scientific Reports, 2016, 6, 34046.	1.6	27
38	Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4476-4481.	3.3	287
39	Heparan sulfate proteoglycans mediate renal carcinoma metastasis. International Journal of Cancer, 2016, 139, 2791-2801.	2.3	28
40	Abstract LB-347: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. , 2016, , .		2
41	Microfluidic Model of Angiogenic Sprouting. Methods in Molecular Biology, 2015, 1214, 243-254.	0.4	4
42	Flowâ€mediated Vessel Guidance. FASEB Journal, 2013, 27, 688.3.	0.2	0
43	RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab on A Chip, 2012, 12, 5000.	3.1	44
44	Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integrative Biology (United Kingdom), 2012, 4, 857.	0.6	85
45	Biomechanical Determinants of Endothelial Sprouting and Morphogenesis. FASEB Journal, 2012, 26, 683.10.	0.2	0
46	Fluid forces control endothelial sprouting. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15342-15347.	3.3	432
47	Biomechanical Determinants of Endothelial Cell Sprouting in a Microfluidic Device. FASEB Journal, 2011, 25, 1091.9.	0.2	0
48	Microfluidic Platform for Reproducing Blood Vessel Microenvironment. FASEB Journal, 2010, 24, 1031.4.	0.2	1
49	Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells. PLoS ONE, 2009, 4, e5756.	1.1	283
50	Micro- and Nanofluidics for Cell Biology, Cell Therapy, and Cell-Based Drug Testing. , 2009, , .		0
51	Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials, 2008, 29, 2646-2655.	5.7	114
52	Characterization and Resolution of Evaporation-Mediated Osmolality Shifts That Constrain Microfluidic Cell Culture in Poly(dimethylsiloxane) Devices. Analytical Chemistry, 2007, 79, 1126-1134.	3.2	214
53	Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomedical Microdevices, 2007, 9, 123-134.	1.4	216
54	Handheld recirculation system and customized media for microfluidic cell culture. Lab on A Chip, 2006, 6, 149-154.	3.1	88

#	Article	IF	CITATIONS
55	Computer-Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing. Analytical Chemistry, 2005, 77, 3993-3999.	3.2	224
56	Novel approaches to the rapeutics in pancreatic adenocarcinoma: vitamin C and tumor treatment fields. , 0, , .		0