Xiaoqian Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574155/publications.pdf Version: 2024-02-01

XIAOOIAN DENC

#	Article	IF	CITATION
1	Synthesis of Cu-doped Li4Ti5O12 anode materials with a porous structure for advanced electrochemical energy storage: Lithium-ion batteries. Solid State Ionics, 2021, 364, 115614.	1.3	23
2	Wafer-like FeSe2-NiSe2/C nanosheets as efficient anode for high-performances lithium batteries. Chemical Physics Letters, 2020, 746, 137274.	1.2	18
3	SnO2-MoO3 nanoparticles anchored in carbon nanotubes as a large-capacity, high-rate, and long-lifetime anode for lithium-ion batteries. Ceramics International, 2021, 47, 27022-27031.	2.3	14
4	Synthesis of ternary SnO2–MoO3–C composite with nanosheet structure as high-capacity, high-rate and long-lifetime anode for lithium-ion batteries. Ceramics International, 2021, 47, 9303-9309.	2.3	12
5	RuO2 doping and its influence on phase structure, cations state, and electrical properties of Mn1·6Co0A·4CuO4 ceramics. Ceramics International, 2021, 47, 2107-2114.	2.3	12
6	SnO2–ZrO2 nanoparticles embedded in carbon nanotubes as a large capacity, high rate and long lifetime anode for lithium-ion batteries. Ceramics International, 2021, 47, 14301-14310.	2.3	11
7	Graphite nano-modified SnO2-Ti2C MXene as anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 886, 161139.	2.8	11
8	Ultra-thin carbon nanosheets coated with SnO2–NbC nanoparticles as high-performance anode materials for lithium-ion batteries. Ceramics International, 2021, 47, 31062-31072.	2.3	9
9	Synthesis and electrochemical performances of ternary nanocomposite SnO2@MoO3@graphene as high-performance anode material for lithium-ion batteries. Chemical Physics Letters, 2021, 770, 138408.	1.2	8
10	SnO2-ZnO nanoparticles wrapped in graphite nanosheets as a large-capacity, high-rate and long-lifetime anode for lithium-ion batteries. Chemical Physics Letters, 2021, 769, 138392.	1.2	7
11	SnO2-Co3O4-graphite nanosheets with stable structure, high reversible capacity, and long life as anode material for lithium-ion batteries. Ionics, 2021, 27, 4167-4175.	1.2	7
12	Exfoliated Graphite Nanosheets Coating on Nano-grained SnO2/Li4Ti5O12 as a High-Performance Anode Material for Lithium-Ion Batteries. Langmuir, 2020, 36, 14666-14675.	1.6	5
13	Construction of KB@ZIF-8/PP Composite Separator for Lithium–Sulfur Batteries with Enhanced Electrochemical Performance. Polymers, 2021, 13, 4210.	2.0	5
14	Fe ₃ C Encapsulated in Three-Dimensional Porous Cellulose Acetate as a High-Performance Anode for Potassium Ion Batteries. Energy & Fuels, 2022, 36, 1063-1071.	2.5	2
15	Macrophage-Like NiSe2–C@Ni Nanofoams As High-Performance Anode Material for Lithium-Ion Batteries. Russian Journal of Physical Chemistry A, 2021, 95, 1911-1917.	0.1	0