
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Phase Separation and Crystallization for <scp>Highâ€Efficiency</scp> and <scp>Mechanically Deformable</scp> Organic Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	6
2	Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules, 2022, 55, 2497-2508.	2.2	15
3	Optimizing the Intercrystallite Connection of Donorâ€Acceptor Conjugated Semiconductor Polymer by Controlling the Crystallization Rate via Temperature. Macromolecular Rapid Communications, 2022, , 2200084.	2.0	6
4	Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure. Advanced Energy Materials, 2022, 12, .	10.2	25
5	In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules, 2022, 55, 297-308.	2.2	30
6	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
7	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
8	Increasing the nucleation and growth barrier of a non-fullerene acceptor to achieve bicontinuous pathways in semitransparent ternary polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 5713-5722.	2.7	10
9	Optimization of local orientation and vertical phase separation by adding a volatilizable solid additive to the J51:N2200 blend to improve its photovoltaic performance. Journal of Materials Chemistry C, 2021, 9, 3835-3845.	2.7	13
10	Nucleation and Growth of P(NDI2OD-T2) Nanowires via Side Chain Ordering and Backbone Planarization. Macromolecules, 2021, 54, 2143-2154.	2.2	38
11	Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules, 2021, 54, 3907-3926.	2.2	70
12	To Reveal the Importance of the Crystallization Sequence on Micro-Morphological Structures of All-Crystalline Polymer Blends by <i>In Situ</i> Investigation. ACS Applied Materials & Interfaces, 2021, 13, 21756-21764.	4.0	11
13	Editorial: Organic Semiconductors: Investigating the Processing-Structure-Property Relationships. Frontiers in Chemistry, 2021, 9, 745170.	1.8	2
14	n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance. Chemical Research in Chinese Universities, 2021, 37, 1019-1030.	1.3	8
15	Role of Molecular Weight in Microstructural Transition and Its Correlation to the Mechanical and Electrical Properties of P(NDI2OD-T2) Thin Films. Macromolecules, 2021, 54, 10203-10215.	2.2	36
16	Optimizing the Crystallization Behavior and Film Morphology of Donor–Acceptor Conjugated Semiconducting Polymers by Side-Chain–Solvent Interaction in Nonpolar Solvents. Macromolecules, 2021, 54, 10557-10573.	2.2	30
17	Donor–acceptor type conjugated copolymers based on alternating BNBP and oligothiophene units: from electron acceptor to electron donor and from amorphous to semicrystalline. Journal of Materials Chemistry A, 2020, 8, 20998-21006.	5.2	22
18	Recent advances in conjugated polythiophene-based rod–rod block copolymers: From morphology control to optoelectronic applications. Giant, 2020, 4, 100039.	2.5	25

#	Article	IF	CITATIONS
19	Increasing N2200 Charge Transport Mobility to Improve Performance of All Polymer Solar Cells by Forming a Percolation Network Structure. Frontiers in Chemistry, 2020, 8, 394.	1.8	26
20	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
21	Efficient Nonhalogenated Solvent-Processed Ternary All-Polymer Solar Cells with a Favorable Morphology Enabled by Two Well-Compatible Donors. ACS Applied Materials & Interfaces, 2019, 11, 32200-32208.	4.0	32
22	Control the interplay of crystallization and phase separation of conjugated polymer blends by the relative rate of nucleation and growth. Polymer, 2019, 182, 121827.	1.8	11
23	Liquid Crystal Ordering on Conjugated Polymers Film Morphology for High Performance. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1572-1591.	2.4	22
24	31.1: <i>Invited Paper:</i> Systematic Design of Jettable Inks for Printed O/Pled. Digest of Technical Papers SID International Symposium, 2019, 50, 330-331.	0.1	0
25	Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. Journal of Materials Chemistry C, 2019, 7, 12560-12571.	2.7	42
26	Separating Crystallization Process of P3HT and Oâ€IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation. Advanced Functional Materials, 2019, 29, 1807591.	7.8	82
27	Conjugated polymer single crystals and nanowires. Polymer Crystallization, 2019, 2, e10064.	0.5	19
28	Design optimized intermixed phase by tuning polymer-fullerene intercalation for free charge generation. Chinese Chemical Letters, 2019, 30, 1405-1409.	4.8	13
29	Optimized mixed phases to achieve improved performance of organic solar cells. MRS Communications, 2019, 9, 1235-1241.	0.8	0
30	Diketopyrrolopyrroleâ€based polymer nanowires: Control of chain conformation and nucleation. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 833-841.	2.4	9
31	Inkjet printing of viscoelastic polymer inks. Chinese Chemical Letters, 2018, 29, 399-404.	4.8	35
32	Optimizing H-/J-Type Aggregation and Vertical Phase Separation To Improve Photovoltaic Efficiency of Small Molecule Solar Cells by Adding a Macromolecule Additive. ACS Applied Energy Materials, 2018, 1, 6338-6344.	2.5	11
33	Diketopyrrolopyrroleâ€based polymer fibrils formation by changing molecular conformation during film formation. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1079-1086.	2.4	6
34	Balancing Crystal Size in Small-Molecule Nonfullerene Solar Cells through Fine-Tuning the Film-Forming Kinetics to Fabricate Interpenetrating Network. ACS Omega, 2018, 3, 7603-7612.	1.6	12
35	Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. Journal of Materials Chemistry A, 2018, 6, 15610-15620.	5.2	86
36	Insight Into the Role of PC71BM on Enhancing the Photovoltaic Performance of Ternary Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 198.	1.8	41

#	Article	IF	CITATIONS
37	Morphology Control of Non-fullerene Blend Systems Based on Perylene. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 391-406.	2.2	6
38	Polymer Electron Acceptors Based on Isoâ€Naphthalene Diimide Unit with High LUMO Levels. Macromolecular Chemistry and Physics, 2017, 218, 1600606.	1.1	15
39	Dual Förster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs. RSC Advances, 2017, 7, 13289-13298.	1.7	12
40	Inkjet printed polystyrene sulfuric acid-doped poly(3,4-ethylenedioxythiophene) (PEDOT) uniform thickness films in confined grooves through decreasing the surface tension of PEDOT inks. RSC Advances, 2017, 7, 7725-7733.	1.7	15
41	Polymer Electron Acceptors with Conjugated Side Chains for Improved Photovoltaic Performance. Macromolecules, 2017, 50, 3171-3178.	2.2	38
42	Restricting the liquid–liquid phase separation of PTB7-Th:PF12TBT:PC ₇₁ BM by enhanced PTB7-Th solution aggregation to optimize the interpenetrating network. RSC Advances, 2017, 7, 17913-17922.	1.7	25
43	Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh ₂) ₂ /EP-PDI blend system via thermal annealing. Journal of Materials Chemistry C, 2017, 5, 6842-6851.	2.7	13
44	Improving fiber alignment by increasing the planar conformation of isoindigo-based conjugated polymers. Materials Chemistry Frontiers, 2017, 1, 286-293.	3.2	9
45	Decreased domain size of <i>p</i> -DTS(FBTTh ₂) ₂ /P(NDI2OD-T2) blend films due to their different solution aggregation behavior at different temperatures. Physical Chemistry Chemical Physics, 2017, 19, 32373-32380.	1.3	6
46	Fullereneâ€Free Polymer Solar Cells with Openâ€Circuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5922-5929.	7.8	35
47	Tuning the Ï€â€Ï€ stacking distance and <scp>J</scp> â€aggregation of <scp>DPP</scp> â€based conjugated polymer via introducing insulating polymer. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 838-847.	2.4	23
48	Optimized domain size and enlarged D/A interface by tuning intermolecular interaction in all-polymer ternary solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1811-1819.	2.4	27
49	Single cell migration dynamics mediated by geometric confinement. Colloids and Surfaces B: Biointerfaces, 2016, 145, 72-78.	2.5	18
50	Molecular Orientation and Phase Separation by Controlling Chain Segment and Molecule Movement in P3HT/N2200 Blends. Macromolecules, 2016, 49, 6987-6996.	2.2	34
51	A bi-continuous network structure of p-DTS(FBTTh ₂) ₂ /EP-PDI via selective solvent vapor annealing. Journal of Materials Chemistry C, 2016, 4, 10095-10104.	2.7	7
52	Increasing H-aggregation of p-DTS(FBTTh2)2 to improve photovoltaic efficiency by solvent vapor annealing. Organic Electronics, 2016, 37, 6-13.	1.4	21
53	Vinylidenedithiophenmethyleneoxindole: a centrosymmetric building block for donor–acceptor copolymers. Polymer Chemistry, 2016, 7, 1413-1421.	1.9	25
54	Enhancing the crystallization and optimizing the orientation of perovskite films via controlling nucleation dynamics. Journal of Materials Chemistry A, 2016, 4, 223-232.	5.2	75

#	Article	IF	CITATIONS
55	The molecular regioregularity induced morphological evolution of polymer blend thin films. Polymer, 2016, 86, 105-112.	1.8	6
56	Crystallization-dominated and microphase separation/crystallization-coexisted structure of all-conjugated phenylene-thiophene diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1718-1726.	2.4	5
57	Phase Diagram of Conjugated Polymer Blend P3HT/PF12TBT and the Morphology-Dependent Photovoltaic Performance. Journal of Physical Chemistry C, 2015, 119, 1729-1736.	1.5	19
58	Decreased domain size and improved crystallinity by adjusting solvent–polymer interaction parameters in allâ€polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 288-296.	2.4	13
59	Balancing the H- and J-aggregation in DTS(PTTh ₂) ₂ /PC ₇₀ BM to yield a high photovoltaic efficiency. Journal of Materials Chemistry C, 2015, 3, 8183-8192.	2.7	45
60	Development of Large-Scale Size-Controlled Adult Pancreatic Progenitor Cell Clusters by an Inkjet-Printing Technique. ACS Applied Materials & Interfaces, 2015, 7, 11624-11630.	4.0	10
61	Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 25352-25361.	4.0	78
62	Solvent-dependent self-assembly and ordering in slow-drying drop-cast conjugated polymer films. Journal of Materials Chemistry C, 2015, 3, 9842-9848.	2.7	23
63	Face-On and Edge-On Orientation Transition and Self-Epitaxial Crystallization of All-Conjugated Diblock Copolymer. Macromolecules, 2015, 48, 7557-7566.	2.2	31
64	Simultaneous Control over both Molecular Order and Long-Range Alignment in Films of the Donor–Acceptor Copolymer. Langmuir, 2015, 31, 469-479.	1.6	34
65	Donor–acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property. Nanoscale, 2015, 7, 1944-1955.	2.8	31
66	Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives. Physical Chemistry Chemical Physics, 2014, 16, 26917-26928.	1.3	31
67	Molecular Packing and Orientation Transition of Crystalline Poly(2,5â€dihexyloxyâ€ <i>p</i> â€phenylene). Macromolecular Chemistry and Physics, 2014, 215, 405-411.	1.1	20
68	Nanowire Shishâ€Kebab Structures and Molecular Orientation Control of All onjugated Diblock Copolymers. Chemistry - an Asian Journal, 2014, 9, 2239-2248.	1.7	11
69	Supramolecular metallogels with complex of phosphonate substituted carbazole derivative and aluminum(III) ion as gelator. Journal of Colloid and Interface Science, 2014, 425, 102-109.	5.0	5
70	Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation. Physical Chemistry Chemical Physics, 2014, 16, 4528.	1.3	34
71	Improving the Morphology of PCDTBT:PC ₇₀ BM Bulk Heterojunction by Mixed-Solvent Vapor-Assisted Imprinting: Inhibiting Intercalation, Optimizing Vertical Phase Separation, and Enhancing Photon Absorption. Journal of Physical Chemistry C, 2014, 118, 4585-4595.	1.5	41
72	Orderâ€order transitions of a triblock copolymer with a homopolymer (ABC/A) blend film induced by saturated solvent vapor annealing. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1030-1036.	2.4	5

#	Article	IF	CITATIONS
73	Controlling PCBM aggregation in P3HT/PCBM film by a selective solvent vapor annealing. Science Bulletin, 2013, 58, 2767-2774.	1.7	26
74	Formation of parallel aligned nano-fibrils of a donor–acceptor conjugated copolymer via controlling J-aggregates and post treatment. Soft Matter, 2013, 9, 9849.	1.2	10
75	A quasi-ordered bulk heterojunction of P3HT/PCBM solar cells fabricated by zone-casting. Solar Energy Materials and Solar Cells, 2013, 117, 421-428.	3.0	8
76	Hierarchical network-like structure of poly(3-hexlthiophene) (P3HT) by accelerating the disentanglement of P3HT in a P3HT/PS (polystyrene) blend. RSC Advances, 2013, 3, 17195.	1.7	14
77	Effects of molecular structures and solvent properties on the self-assembly of carbazole-based conjugated dendrimers by solvent vapor annealing. RSC Advances, 2013, 3, 8037.	1.7	7
78	Formation of parallel aligned nano-fibrils of poly(3,3′′′a€²-didodecylquaterthiophene) induced by the unimer coils in solution. RSC Advances, 2013, 3, 12069.	1.7	10
79	A morphological transition from sheet crystals to r crystals of triethylsilylethynyl anthradithiophene based on thermal annealing. RSC Advances, 2013, 3, 5529.	1.7	4
80	Supramolecular assemblies from carbazole dendrimers modulated by core size and molecular configuration. Soft Matter, 2013, 9, 10404.	1.2	11
81	Detection of explosives with porous xerogel film from conjugated carbazole-based dendrimers. Journal of Materials Chemistry C, 2013, 1, 786-792.	2.7	51
82	Decreasing the aggregation of PCBM in P3HT/PCBM blend films by cooling the solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 135-141.	2.3	12
83	Vapor-assisted imprinting to pattern poly(3-hexylthiophene) (P3HT) film with oriented arrangement of nanofibrils and flat-on conformation of P3HT chains. Polymer, 2013, 54, 423-430.	1.8	16
84	Polymer thin films for antireflection coatings. Journal of Materials Chemistry C, 2013, 1, 2266.	2.7	78
85	Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. Journal of Materials Chemistry A, 2013, 1, 6216.	5.2	72
86	Nano-fibrils formation of pBTTT via adding alkylthiol into solutions: Control ofÂmorphology and crystalline structure. Polymer, 2013, 54, 948-957.	1.8	14
87	Morphological transformation of pyrazine-based acene-type molecules after blending with semiconducting polymers: from fibers to quadrilateral crystals. Soft Matter, 2013, 9, 5634.	1.2	1
88	Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport. Polymers, 2013, 5, 1272-1324.	2.0	88
89	Thickness Uniformity Adjustment of Inkjet Printed Lightâ€emitting Polymer Films by Solvent Mixture. Chinese Journal of Chemistry, 2013, 31, 1449-1454.	2.6	14
90	Polymer assisted solution-processing of rubrene spherulites via solvent vapor annealing. RSC Advances, 2012, 2, 5779.	1.7	16

YANCHUN HAN

#	Article	IF	CITATIONS
91	Manipulating the Crystallization of Methanofullerene Thin Films with Polymer Additives. Macromolecular Chemistry and Physics, 2012, 213, 2081-2090.	1.1	11
92	The influence of additive property on performance of organic bulk heterojunction solar cells. Polymer Bulletin, 2012, 68, 2145-2174.	1.7	20
93	Inhibition of dewetting of thin polymer films. Progress in Materials Science, 2012, 57, 947-979.	16.0	75
94	Oxidation induced self-assembly transformation of dendron-b-oligoaniline-b-dendron dumbbell shape triblock oligomer. Soft Matter, 2011, 7, 8516.	1.2	7
95	Tunable wavelength antireflective film by non-solvent-induced phase separation of amphiphilic block copolymer micelle solution. Journal of Materials Chemistry, 2011, 21, 18024.	6.7	15
96	Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures. Journal of Materials Chemistry, 2011, 21, 5817.	6.7	40
97	Micropatterning and transferring of polymeric semiconductor thin films by hot lift-off and polymer bonding lithography in fabrication of organic field effect transistors (OFETs) on flexible substrate. Applied Surface Science, 2011, 257, 9264-9268.	3.1	8
98	Oriented Poly(3-hexylthiophene) Nanofibril with the Ï€â^'Ï€ Stacking Growth Direction by Solvent Directional Evaporation. Langmuir, 2011, 27, 4212-4219.	1.6	78
99	Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. Journal of Colloid and Interface Science, 2011, 353, 498-505.	5.0	21
100	Porous Polymer Films with Gradientâ€Refractiveâ€Index Structure for Broadband and Omnidirectional Antireflection Coatings. Advanced Functional Materials, 2010, 20, 259-265.	7.8	132
101	Phase Separation in Poly(9,9â€dioctylfluorene)/Poly(methyl methacrylate) Blends. Macromolecular Chemistry and Physics, 2010, 211, 313-320.	1.1	12
102	Microphase Separation of Block Copolymer Thin Films. Macromolecular Rapid Communications, 2010, 31, 591-608.	2.0	37
103	Crystallizationâ€Induced Phase Segregation Based on Doubleâ€Crystalline Blends of Poly(3â€hexylthiophene) and Poly(ethylene glycol)s. Macromolecular Rapid Communications, 2010, 31, 532-538.	2.0	38
104	The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology. Organic Electronics, 2010, 11, 775-783.	1.4	82
105	Cylinderâ€ŧoâ€ŧodâ€ŧoâ€sphere evolution of complex micelles in solution and their corresponding solventâ€induced crystallization process. Polymer International, 2010, 59, 1064-1070.	1.6	1
106	A New Method to Improve Poly(3-hexyl thiophene) (P3HT) Crystalline Behavior: Decreasing Chains Entanglement To Promote Orderâ°'Disorder Transformation in Solution. Langmuir, 2010, 26, 471-477.	1.6	110
107	Orderâ€Order Transition of C → sdG → sL → S in ABC Triblock Copolymer Thin Film Macromolecular Rapid Communications, 2009, 30, 515-520.	n Induced	by Solvent
108	Vesicles Formed by Oligostyreneâ€ <i>block</i> â€Oligoanilineâ€ <i>block</i> â€Oligostyrene Triblock Oligomer. Macromolecular Rapid Communications, 2009, 30, 521-527.	2.0	20

7

#	Article	IF	CITATIONS
109	Microphaseâ€Separated Brushes on Square Platelets in PSâ€∢i>bâ€PEO Thin Films. Macromolecular Rapid Communications, 2009, 30, 1509-1514.	2.0	13
110	Formation of Two Kinds of Hexagonally Arranged Structures in ABC Triblock Copolymer Thin Films Induced by a Strongly Selective Solvent Vapor. Macromolecular Rapid Communications, 2009, 30, 1917-1921.	2.0	14
111	Lamella reorientation in thin films of a symmetric poly(l-lactic acid)-block-polystyrene upon crystallization at different temperatures. Polymer, 2009, 50, 1588-1595.	1.8	8
112	Super-hydrophobicity of silica nanoparticles modified with vinyl groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 15-19.	2.3	59
113	Effect of block sequence and block length on the stimuli-responsive behavior of polyampholyte brushes: hydrogen bonding and electrostatic interaction as the driving force for surface rearrangement. Soft Matter, 2009, 5, 759-768.	1.2	31
114	Explanation for micromorphologies around broken fibers in fiberâ€reinforced composites. Polymer Composites, 2008, 29, 649-654.	2.3	7
115	Square Lamellar Structure Having Phaseâ€5eparated Microdomain in Hâ€5haped Block Copolymer Thin Film. Macromolecular Rapid Communications, 2008, 29, 1378-1384.	2.0	8
116	Polymer Crystallization Influenced by Initial Orientation of Cylindrical Diblock Copolymers in Thin Films. Macromolecular Rapid Communications, 2008, 29, 1614-1619.	2.0	5
117	Microlenses fabricated by discontinuous dewetting and soft lithography. Microelectronic Engineering, 2008, 85, 1878-1881.	1.1	13
118	Ring-shaped morphology in H-shaped block copolymer thin films. Soft Matter, 2008, 4, 2507.	1.2	5
119	Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block Copolymer Thin Films. Macromolecular Rapid Communications, 2007, 28, 1422-1428.	2.0	53
120	Colloidal crystal heterostructures by a two-step vertical deposition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 107-112.	2.3	12
121	Surface morphology evolution of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl) Tj ETQq1 J 2007, 48, 2425-2433.	0.78431 1.8	4 rgBT /Ove 5
122	Colloidal photonic crystals with a graded lattice-constant distribution. Colloid and Polymer Science, 2007, 285, 1037-1041.	1.0	18
123	A stable PEO-tethered PDMS surface having controllable wetting property by a swelling–deswelling process. Soft Matter, 2006, 2, 705-709.	1.2	50
124	Tunable photonic crystals by mixed liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 213-217.	2.3	15
125	Complex aggregates of silica microspheres by the use of a polymer template. Colloid and Polymer Science, 2006, 284, 366-371.	1.0	9
126	Fabrication of arrays of silver nanoparticle aggregates by microcontact printing and block copolymer nanoreactors. Journal of Applied Polymer Science, 2006, 100, 2737-2743.	1.3	13

#	Article	IF	CITATIONS
127	Reactive blending of modified polypropylene and polyamide 12: Effects of compatibilizer content on crystallization and blend morphology. Journal of Applied Polymer Science, 2006, 100, 3187-3192.	1.3	13
128	Synthesis and Surface Morphology of Tetraaniline-block-Poly(L-lactate) Diblock Oligomers. Macromolecular Rapid Communications, 2006, 27, 63-68.	2.0	50
129	A Polymer Composite Film with Reversible Responsive Behaviors. Macromolecular Rapid Communications, 2006, 27, 136-141.	2.0	16
130	Surface Morphology Evolution of a Thin Polymeric Supramolecular Film by Tuning Interactions. Macromolecular Rapid Communications, 2006, 27, 295-301.	2.0	11
131	Multiple Morphologies and Their Transformation of a Polystyrene-block-poly(4-vinylpyridine) Block Copolymer. Macromolecular Rapid Communications, 2006, 27, 260-265.	2.0	26
132	A Composite Polymer Film with both Superhydrophobicity and Superoleophilicity. Macromolecular Rapid Communications, 2006, 27, 804-808.	2.0	99
133	Studies on the reactive polyvinylidene fluoride-polyamide 6 interfaces: rheological properties and interfacial width. Polymer, 2005, 46, 2365-2371.	1.8	12
134	Water-induced morphology evolution of block copolymer micellar thin films. Polymer, 2005, 46, 5377-5384.	1.8	37
135	Solvent vapor induced dewetting in diblock copolymer thin films. Polymer, 2005, 46, 5767-5772.	1.8	43
136	Solvent assisted capillary force lithography. Polymer, 2005, 46, 11099-11103.	1.8	17
137	A self-assembly approach to fabricate the patterned colloidal crystals with a tunable structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 22-27.	2.3	17
138	Reversible Superhydrophobicity to Superhydrophilicity Transition by Extending and Unloading an Elastic Polyamide Film. Macromolecular Rapid Communications, 2005, 26, 477-480.	2.0	125
139	Low-Density Polyethylene (LDPE) Surface With a Wettability Gradient by Tuning its Microstructures. Macromolecular Rapid Communications, 2005, 26, 637-642.	2.0	59
140	Solvent Induced Sphere Development in Symmetric Diblock Copolymer Thin Films. Macromolecular Rapid Communications, 2005, 26, 738-743.	2.0	26
141	Ordered porous polymer films via phase separation in humidity environment. Polymer, 2005, 46, 5334-5340.	1.8	69
142	Self-organization and luminescent properties of nanostructured europium (III)-block copolymer complex thin films. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2181-2189.	2.4	27
143	Acid-induced morphological transition of block copolymer brush adsorbed on mica surface. Polymer International, 2005, 54, 1021-1026.	1.6	1
144	Surface-induced Phase Separation of Binary Polymer Blends on the Chemically Patterned Substrate. Polymer Bulletin, 2005, 55, 131-140.	1.7	12

YANCHUN HAN

0

#	Article	IF	CITATIONS
145	Early Stage Interplay of Microphase Separation and Crystallization in Crystallineâ^Coil Poly(l-lactic) Tj ETQq1 1 0	.784314 r 2.2	gBT/Overlock
146	Pattern formation in a confined polymer film induced by a temperature gradient. Polymer, 2004, 45, 8013-8017.	1.8	33
147	The Formation of Ordered Nanoholes in Binary, Chemically Similar, Symmetric Diblock Copolymer Blend Films. Macromolecular Rapid Communications, 2004, 25, 1181-1185.	2.0	2
148	Superhydrophobic PTFE Surfaces by Extension. Macromolecular Rapid Communications, 2004, 25, 1105-1108.	2.0	225
149	Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior. Macromolecular Rapid Communications, 2004, 25, 1606-1610.	2.0	203
150	Patterned self-adaptive polymer brushes by "grafting to―approach and microcontact printing. Surface Science, 2004, 572, 490-496.	0.8	13
151	Ordered macroporous films from self-assembly of two-armed polymer with a crown ether core. Polymer, 2004, 45, 7389-7394.	1.8	11
152	Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics, 2003, 204, 125-130.	1.1	65
153	AFM Study of the Self-Assembly Behavior of Hexa-Armed Star Polymers with a Discotic Triphenylene Core. Macromolecular Rapid Communications, 2003, 24, 742-747.	2.0	16
154	Fabrication of a Metal Particle Array Based on a Self-Assembled Template from a Two-Armed Polymer. Macromolecular Rapid Communications, 2003, 24, 487-491.	2.0	15
155	Effects of rubber content and temperature on unstable fracture behavior in ABS materials with different particle sizes. Journal of Applied Polymer Science, 2001, 79, 9-20.	1.3	27
156	Analysis of structural relaxation in a Li2O2SiO2 glass using rate heating approach. Journal of Materials Science, 1999, 34, 1899-1904.	1.7	16
157	Relationship between viscoelastic transition and yield behavior of phenolphthalein poly(ether) Tj ETQq1 1 0.784	814.rgBT / 1.3	Overlock 10
158	Plastic zone in front of mode I crack in phenolphthalein polyether ketone. Angewandte Makromolekulare Chemie, 1996, 235, 47-55.	0.3	2
159	Instrumented impact testing of phenolphthalein polyether ketone. Angewandte Makromolekulare Chemie, 1996, 243, 39-49.	0.3	1
160	Relationship between viscoelastic transition and yield behavior of phenolphthalein poly(ether) Tj ETQq0 0 0 rgBT	Overlock	≀ 10 Tf 50 142
161	Title is missing!. Angewandte Makromolekulare Chemie, 1995, 225, 63-72.	0.3	4

162Simple models for stress relaxation and yield phenomenon of phenolphthalein poly(ether ketone).0.3Angewandte Makromolekulare Chemie, 1995, 226, 59-69.0.3

YANCHUN HAN

#	Article	IF	CITATIONS
163	The izod impact fracture behaviour of phenolphthalein poly(ether ketone). Angewandte Makromolekulare Chemie, 1995, 227, 131-138.	0.3	1
164	Mechanical properties of phenolphthalein polyether ketone: Yield stress, young's modulus, and fracture toughness. Journal of Applied Polymer Science, 1995, 56, 979-984.	1.3	4
165	The charpy impact fracture behavior of phenolphthalein polyether ketone. Journal of Applied Polymer Science, 1995, 56, 1059-1063.	1.3	1
166	Viscoelastic properties of phenolphthalein poly(ether ketone). Journal of Applied Polymer Science, 1995, 56, 1349-1353.	1.3	3
167	Fracture toughness of phenolphthalein polyether ketone. Journal of Applied Polymer Science, 1995, 57, 655-661.	1.3	11
168	Title is missing!. Angewandte Makromolekulare Chemie, 1994, 221, 155-163.	0.3	0
169	J-integral studies of crack initiation and crack tip-blunting of phenolphthalein polyether ketone. Journal of Applied Polymer Science, 1994, 54, 375-383.	1.3	1
170	Tensile yield in phenolphthalein polyether ketone. Journal of Applied Polymer Science, 1994, 54, 2045-2049.	1.3	1
171	Crystals Array via Oriented Nucleation and Growth Induced by Smectic E Mesophase of C7-T-BTBT. Chemical Research in Chinese Universities, 0, , 1.	1.3	Ο