Matti Adam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741376/publications.pdf Version: 2024-02-01

Μλττι Δηλμ

#	Article	IF	CITATIONS
1	Diabetic Cardiovascular Disease Induced by Oxidative Stress. International Journal of Molecular Sciences, 2015, 16, 25234-25263.	1.8	314
2	miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nature Communications, 2014, 5, 5214.	5.8	187
3	Myeloperoxidase: A Leukocyte-Derived Protagonist of Inflammation and Cardiovascular Disease. Antioxidants and Redox Signaling, 2013, 18, 692-713.	2.5	173
4	Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development. Circulation, 2015, 131, 1783-1795.	1.6	113
5	Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus. Circulation Research, 2015, 117, 513-524.	2.0	83
6	MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1859-1867.	1.1	68
7	Hemodynamic Regulation of Reactive Oxygen Species: Implications for Vascular Diseases. Antioxidants and Redox Signaling, 2014, 20, 914-928.	2.5	66
8	Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling. Circulation Research, 2017, 121, 56-70.	2.0	59
9	The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication. Antioxidants, 2021, 10, 562.	2.2	36
10	Antibody Response After a Single Dose of an AS03-Adjuvanted Split-Virion Influenza A (H1N1) Vaccine in Heart Transplant Recipients. Transplantation, 2011, 91, 1031-1035.	0.5	33
11	Chronic Nicotine Exposure Induces Murine Aortic Remodeling and Stiffness Segmentation—Implications for Abdominal Aortic Aneurysm Susceptibility. Frontiers in Physiology, 2018, 9, 1459.	1.3	33
12	Systemic Upregulation of IL-10 (Interleukin-10) Using a Nonimmunogenic Vector Reduces Growth and Rate of Dissecting Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1796-1805.	1.1	33
13	Effect of Transcatheter Aortic Valve Replacement on Concomitant Mitral Regurgitation andÂltsÂlmpact on Mortality. JACC: Cardiovascular Interventions, 2021, 14, 1181-1192.	1.1	31
14	Micromanaging Abdominal Aortic Aneurysms. International Journal of Molecular Sciences, 2013, 14, 14374-14394.	1.8	25
15	Temporal trends of TAVI treatment characteristics in high volume centers in Germany 2013–2020. Clinical Research in Cardiology, 2022, 111, 881-888.	1.5	23
16	Implications of exercise test modality on modern prognostic markers in patients with known or suspected coronary artery disease: Treadmill versus bicycle. European Journal of Cardiovascular Prevention and Rehabilitation, 2006, 13, 45-50.	3.1	22
17	Red blood cells serve as intravascular carriers of myeloperoxidase. Journal of Molecular and Cellular Cardiology, 2014, 74, 353-363.	0.9	21
18	Loss of Somatostatin Receptor Subtype 2 in Prostate Cancer Is Linked to an Aggressive Cancer Phenotype, High Tumor Cell Proliferation and Predicts Early Metastatic and Biochemical Relapse. PLoS ONE, 2014, 9, e100469.	1.1	20

Matti Adam

#	Article	IF	CITATIONS
19	Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Scientific Reports, 2015, 5, 9704.	1.6	19
20	Prognosis of persistent mitral regurgitation in patients undergoing transcatheter aortic valve replacement. Clinical Research in Cardiology, 2020, 109, 1261-1270.	1.5	19
21	Incidence, Risk Factors and Impact on Long-Term Outcome of Postoperative Delirium After Transcatheter Aortic Valve Replacement. Frontiers in Cardiovascular Medicine, 2021, 8, 645724.	1.1	16
22	Nitro-oleic acid reduces thoracic aortic aneurysm progression in a mouse model of Marfan syndrome. Cardiovascular Research, 2022, 118, 2211-2225.	1.8	15
23	Transcatheter aortic valve implantation in patients with a small aortic annulus: performance of supra-, intra- and infra-annular transcatheter heart valves. Clinical Research in Cardiology, 2021, 110, 1957-1966.	1.5	15
24	Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovascular Research, 2023, 119, 857-866.	1.8	11
25	Asymptomatic infection with novel influenza A/H1N1 virus in a heart transplant recipient. Journal of Heart and Lung Transplantation, 2010, 29, 585-586.	0.3	10
26	Nitro-fatty acids suppress ischemic ventricular arrhythmias by preserving calcium homeostasis. Scientific Reports, 2020, 10, 15319.	1.6	9
27	Comparison of Resting Full-Cycle Ratio and Fractional Flow Reserve in a German Real-World Cohort. Frontiers in Cardiovascular Medicine, 2021, 8, 744181.	1.1	8
28	An Automated Algorithm to Quantify Collagen Distribution in Aortic Wall. Journal of Histochemistry and Cytochemistry, 2019, 67, 267-274.	1.3	7
29	Nitro-Oleic Acid (NO2-OA) Improves Systolic Function in Dilated Cardiomyopathy by Attenuating Myocardial Fibrosis. International Journal of Molecular Sciences, 2021, 22, 9052.	1.8	6
30	Hemodynamics of self-expanding versus balloon-expandable transcatheter heart valves in relation to native aortic annulus anatomy. Clinical Research in Cardiology, 2022, 111, 1336-1347.	1.5	6
31	Risk prediction in patients with low-flow, low-gradient aortic stenosis and reduced ejection fraction undergoing TAVI. Open Heart, 2022, 9, e001912.	0.9	4
32	Feasibility and Comparison of Resting Full-Cycle Ratio and Computed Tomography Fractional Flow Reserve in Patients with Severe Aortic Valve Stenosis. Journal of Cardiovascular Development and Disease, 2022, 9, 116.	0.8	3
33	Response to Letters Regarding Article, "Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development― Circulation, 2016, 133, e11-2.	1.6	1
34	Is there a benefit of ICD treatment in patients with persistent severely reduced systolic left ventricular function after TAVI?. Clinical Research in Cardiology, 2022, 111, 492-501.	1.5	1
35	Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation. Frontiers in Immunology, 2021, 12, 701721.	2.2	0
36	Abstract 241: MicroRNA-24 Controls Macrophage Survival in Murine Abdominal Aortic Aneurysm Via Chi311. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0