Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741268/publications.pdf

Version: 2024-02-01

		147801	161849
88	3,238	31	54
papers	citations	h-index	g-index
91	91	91	2368
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrical characteristics of flash sintering: thermal runaway of Joule heating. Journal of the European Ceramic Society, 2015, 35, 1865-1877.	5.7	347
2	Preliminary investigation of flash sintering of SiC. Journal of the European Ceramic Society, 2013, 33, 2811-2816.	5.7	202
3	Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field. Journal of the European Ceramic Society, 2017, 37, 2547-2551.	5 . 7	182
4	The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. Journal of Materials Processing Technology, 2003, 142, 190-196.	6.3	134
5	Relationship between wear rate, surface pullout and microstructure during abrasive wear of alumina and alumina/SiC nanocomposites. Acta Materialia, 2005, 53, 3345-3357.	7.9	103
6	Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. Journal of the European Ceramic Society, 2016, 36, 1829-1834.	5 . 7	102
7	Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Materialia, 2010, 58, 2685-2697.	7.9	99
8	Probing the improbable: imaging C atoms in alumina. Materials Today, 2010, 13, 34-36.	14.2	99
9	A trapped field of >3 T in bulk MgB ₂ fabricated by uniaxial hot pressing. Superconductor Science and Technology, 2012, 25, 112002.	3.5	92
10	Processing and properties of Al ₂ O ₃ /SiC nanocomposites. Journal of Microscopy, 1995, 177, 305-312.	1.8	89
11	Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity. Acta Materialia, 2011, 59, 5159-5170.	7.9	83
12	Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Scientific Reports, 2015, 5, 8513.	3 . 3	69
13	Microcantilever investigation of fracture toughness and subcritical crack growth on the scale of the microstructure in Al 2 O 3. Journal of the European Ceramic Society, 2015, 35, 4521-4533.	5.7	64
14	Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. Journal of Materials Chemistry, 2008, 18, 5344.	6.7	59
15	The relationship between microstructure, fracture and abrasive wear in Al2O3/SiC nanocomposites and microcomposites containing 5 and 10% SiC. Journal of the European Ceramic Society, 2009, 29, 2841-2848.	5 . 7	59
16	Neutron diffraction measurements of residual stresses in alumina/SiC nanocomposites. Acta Materialia, 1997, 45, 1791-1800.	7.9	56
17	The nature of grain boundaries in alumina fabricated by fast sintering. Scripta Materialia, 2010, 62, 658-661.	5.2	55
18	Thermal residual stresses and their toughening effect in Al2O3 platelet reinforced glass. Acta Materialia, 1999, 47, 3233-3240.	7.9	51

#	Article	IF	CITATIONS
19	Influence of processing on the microstructural development and flexure strength of Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 1997, 17, 865-872.	5.7	50
20	Microstructural requirements for alumina–SiC nanocomposites. Advances in Applied Ceramics, 1999, 98, 219-224.	0.4	48
21	A synchrotron X-ray diffraction study of in situ biaxial deformation. Acta Materialia, 2015, 90, 46-58.	7.9	48
22	Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti-Al intermetallics as sintering aid. Journal of the European Ceramic Society, 2016, 36, 2419-2426.	5.7	48
23	The effect of thermal cycling on the properties of a carbon fibre reinforced magnesium composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 397, 249-256.	5.6	46
24	Thermal stress induced microcracking in alumina–20% SiCp composites. Acta Materialia, 2004, 52, 1621-1629.	7.9	45
25	Fabrication and properties of dense <i>ex situ</i> magnesium diboride bulk material synthesized using spark plasma sintering. Superconductor Science and Technology, 2009, 22, 095003.	3. 5	44
26	Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite. Surface and Interface Analysis, 2005, 37, 336-342.	1.8	43
27	A study of the sintering behaviour of magnesium diboride. Journal of the European Ceramic Society, 2009, 29, 1817-1824.	5.7	42
28	Measurement and modelling of electrical resistivity by four-terminal method during flash sintering of 3YSZ. Journal of the Ceramic Society of Japan, 2018, 126, 579-590.	1.1	41
29	The microstructural origin of rapid densification in 3YSZ during ultra-fast firing with or without an electric field. Journal of the European Ceramic Society, 2020, 40, 5829-5836.	5.7	40
30	Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol–gel processing. Carbon, 2010, 48, 2212-2217.	10.3	36
31	Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. Journal of the European Ceramic Society, 2017, 37, 485-498.	5.7	34
32	A Mathematical Model for Flash Sintering. Mathematical Modelling of Natural Phenomena, 2015, 10, 77-89.	2.4	30
33	A synchrotron X-ray diffraction study of non-proportional strain-path effects. Acta Materialia, 2017, 124, 290-304.	7.9	30
34	Assessment of X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading. International Journal of Plasticity, 2016, 83, 1-18.	8.8	28
35	Microstructure and mechanical properties of Al2O3 matrix nanocomposites produced by solid state precipitation. Journal of the European Ceramic Society, 2010, 30, 1359-1372.	5.7	26
36	Nacre-like alumina with unique high strain rate capabilities. Journal of the European Ceramic Society, 2020, 40, 417-426.	5.7	26

#	Article	IF	Citations
37	Abrasive wear rate of boron carbide ceramics: Influence of microstructural and mechanical aspects on their tribological response. Journal of the European Ceramic Society, 2016, 36, 3925-3928.	5 . 7	24
38	Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 2009, 29, 1613-1624.	5.7	23
39	Effects of Yttrium on the Sintering and Microstructure of Alumina-Silicon Carbide "Nanocomposites". Journal of the American Ceramic Society, 2005, 88, 2354-2361.	3.8	22
40	Quantitative analysis of the residual stress and dislocation density distributions around indentations in alumina and zirconia toughened alumina (ZTA) ceramics. Journal of the European Ceramic Society, 2014, 34, 753-763.	5.7	22
41	Effect of residual compressive surface stress on severe wear of alumina–silicon carbide two-layered composites. Tribology International, 2014, 74, 87-92.	5.9	22
42	Confocal fluorescence microscopy in alumina-based ceramics: Where does the signal come from?. Journal of the European Ceramic Society, 2010, 30, 641-648.	5.7	21
43	Thermal and electrical properties of aluminoborosilicate glass–ceramics containing multiwalled carbon nanotubes. Scripta Materialia, 2011, 65, 408-411.	5.2	21
44	Influence of C doping on the fracture mode and abrasive wear of Al2O3. Journal of the European Ceramic Society, 2012, 32, 4003-4007.	5.7	21
45	Residual stress distribution in a functionally graded alumina–silicon carbide material. Scripta Materialia, 2012, 67, 281-284.	5.2	20
46	Measurement of swelling-induced residual stress in ion implanted SiC, and its effect on micromechanical properties. Acta Materialia, 2020, 196, 78-87.	7.9	20
47	Influence factors on wear resistance of two alumina matrix composites. Wear, 2008, 265, 27-33.	3.1	19
48	Quantitative optical fluorescence microprobe measurements of stresses around indentations in Al2O3 and Al2O3/SiC nanocomposites: The influence of depth resolution and specimen translucency. Acta Materialia, 2011, 59, 2637-2647.	7.9	17
49	High resolution optical microprobe investigation of surface grinding stresses in Al2O3 and Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 2011, 31, 97-109.	5.7	16
50	Relationship between microstructure and abrasive wear resistance of Al2O3–FeAl2O4 nanocomposites produced via solid-state precipitation. Journal of the European Ceramic Society, 2011, 31, 339-350.	5.7	16
51	Microstructure-Property Relationships in Wear Resistant Alumina/SiC "Nanocomposites". Advances in Science and Technology, 2006, 45, 555-563.	0.2	15
52	Cr3+ microspectroscopy measurements and modelling of local variations in surface grinding stresses in polycrystalline alumina. Journal of the European Ceramic Society, 2010, 30, 2533-2545.	5.7	15
53	High Resolution Surface Studies of Superplastic Deformation. Materials Science Forum, 2007, 551-552, 615-620.	0.3	14
54	High resolution surface studies of superplastic deformation in shear and tension. Materialwissenschaft Und Werkstofftechnik, 2008, 39, 289-292.	0.9	14

#	Article	IF	Citations
55	Characterisation of damage mechanisms in oxide ceramics indented at dynamic and quasi-static strain rates. Journal of the European Ceramic Society, 2019, 39, 4936-4945.	5.7	14
56	Promoting core/surface homogeneity during flash sintering of 3YSZ ceramic by current path management: experimental and modelling studies. Journal of the European Ceramic Society, 2021, 41, 6649-6659.	5.7	13
57	Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling. Journal of Materials Science, 2006, 41, 6228-6236.	3.7	12
58	High strain rate indentation-induced deformation in alumina ceramics measured by Cr3+ fluorescence mapping. Journal of the European Ceramic Society, 2011, 31, 2177-2187.	5.7	12
59	Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing. Science China Technological Sciences, 2012, 55, 484-489.	4.0	12
60	Thermal microstress measurements in Al2O3/SiC nanocomposites by Cr3+ fluorescence microscopy. Journal of the European Ceramic Society, 2003, 23, 1779-1783.	5.7	11
61	In-situ synthesis and sintering of mullite glass composites by SPS. Journal of Advanced Ceramics, 2014, 3, 165-170.	17.4	11
62	Critical review of mechanism of superplastic deformation in fine grained metallic materials. Materials Science and Technology, 2000, 16, 1287-1294.	1.6	10
63	Effect of yttria doping on the microstructure and mechanical properties of Al2O3–FeAl2O4 nanocomposites developed via solid state precipitation. Journal of the European Ceramic Society, 2010, 30, 2905-2915.	5.7	10
64	Functionally graded ceramics by a new in situ processing route: Residual stress and wear resistance. Journal of the European Ceramic Society, 2015, 35, 2693-2698.	5.7	10
65	MWCNT-coated alumina micro-platelets for nacre-like biomimetic composites. Carbon, 2019, 145, 586-595.	10.3	10
66	Large anelastic strains at constant volume in superplastic tin-lead eutectic alloy. Scripta Metallurgica Et Materialia, 1992, 27, 127-132.	1.0	9
67	Grain boundary tension induced strain recovery following superplastic flow. Acta Metallurgica Et Materialia, 1994, 42, 2921-2928.	1.8	9
68	Stiffness, strength and interwall sliding in aligned and continuous multi-walled carbon nanotube/glass composite microcantilevers. Acta Materialia, 2015, 100, 118-125.	7.9	9
69	In situ neutron diffraction study of residual stress development in MgO/SiC ceramic nanocomposites during thermal cycling. Acta Materialia, 2007, 55, 4535-4544.	7.9	8
70	Study on the structure and properties of fine-grained alumina fast sintered with high heating rate. Materials Research Bulletin, 2008, 43, 3521-3528.	5.2	8
71	Statistical effects in X-ray diffraction lattice strain measurements of ferritic steel using crystal plasticity. Materials and Design, 2018, 153, 159-165.	7.0	8
72	Visible light emissions during flash sintering of 3YSZ are thermal radiation. Scripta Materialia, 2022, 219, 114849.	5.2	8

#	Article	IF	CITATIONS
73	Mechanism of the HIP bonding of Zircaloy-4 in the α-phase field. Journal of Materials Processing Technology, 2003, 135, 131-136.	6.3	7
74	Effect of Ion Irradiation on Nanoindentation Fracture and Deformation in Silicon Carbide. Jom, 2021, 73, 1617-1628.	1.9	7
75	Analysis of neutron diffraction peak broadening caused by internal stresses in composite materials. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 354, 139-144.	1.6	6
76	Mechanisms of Microsuperplasticity. Materials Science Forum, 2007, 551-552, 135-145.	0.3	6
77	An indentation model for erosive wear in Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 2011, 31, 85-95.	5.7	6
78	Objective Modelling of Diffusion Bonding in Superplastic Duplex Stainless Steels. Materials Science Forum, 1997, 243-245, 675-680.	0.3	5
79	Quantitative Surface Fractography of Alumina and Alumina-SiC Composites during Diamond Grinding. Key Engineering Materials, 2005, 290, 149-159.	0.4	5
80	The effects of attrition and ball milling on the properties of magnesium diboride. Superconductor Science and Technology, 2010, 23, 065015.	3.5	4
81	Abnormal grain growth in DC flash sintered 3â€mol% yttriaâ€stabilized zirconia ceramics. Journal of the American Ceramic Society, 2022, 105, 5562-5568.	3.8	4
82	Deformation and Microstructural Development in a 2124Al/SiC _p MMC during High Strain Rate Superplasticity. Materials Science Forum, 1999, 304-306, 233-240.	0.3	3
83	Investigation of Superplastic Behaviour and Solid State Bonding of Zircaloy-4. Materials Science Forum, 2001, 357-359, 99-104.	0.3	3
84	Threshold stress for the superplastic elastic after-effect in the Sn-Pb eutectic. Scripta Metallurgica Et Materialia, 1993, 29, 407-409.	1.0	2
85	Relating Grain Boundary Structure to Superplastic Deformation. Materials Science Forum, 1997, 243-245, 99-108.	0.3	2
86	Piezospectroscopic measurement of the stress field around an indentation crack tip in ruby using SEM cathodoluminescence. Journal of the European Ceramic Society, 2008, 28, 2049-2055.	5.7	2
87	Superplasticity in Commercial Al 7475. Materials Science Forum, 2004, 447-448, 283-290.	0.3	0
88	Grain Boundary Microanalysis in Al2O3-SiC Nanocomposites. , 2005, , 111-119.		0