
## Stefan Scholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741206/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Towards a qAOP framework for predictive toxicology - Linking data to decisions. Computational Toxicology, 2022, 21, 100195.                                                                                                                                      | 1.8 | 17        |
| 2  | The Ecoâ€Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. Environmental Toxicology and Chemistry, 2022, 41, 30-45.                                                                                                  | 2.2 | 25        |
| 3  | Inhibition of neurite outgrowth and enhanced effects compared to baseline toxicity in SH-SY5Y cells.<br>Archives of Toxicology, 2022, 96, 1039-1053.                                                                                                             | 1.9 | 12        |
| 4  | Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Computational Toxicology, 2022, 21, 100206.                                                                                                        | 1.8 | 15        |
| 5  | Grouping of chemicals into mode of action classes by automated effect pattern analysis using the zebrafish embryo toxicity test. Archives of Toxicology, 2022, 96, 1353-1369.                                                                                    | 1.9 | 6         |
| 6  | The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Archives of Toxicology, 2022, 96, 2381-2386.                                                                                              | 1.9 | 7         |
| 7  | Chemical effects on dye efflux activity in live zebrafish embryos and on zebrafish Abcb4 ATPase activity. FEBS Letters, 2021, 595, 828-843.                                                                                                                      | 1.3 | 14        |
| 8  | Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. Environmental Sciences Europe, 2021, 33, 17.                                                                                                             | 2.6 | 22        |
| 9  | Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. Toxics, 2021, 9, 104.                                                                                                              | 1.6 | 7         |
| 10 | Critical Membrane Concentration and Mass-Balance Model to Identify Baseline Cytotoxicity of<br>Hydrophobic and Ionizable Organic Chemicals in Mammalian Cell Lines. Chemical Research in<br>Toxicology, 2021, 34, 2100-2109.                                     | 1.7 | 23        |
| 11 | Automated measurement of the spontaneous tail coiling of zebrafish embryos as a sensitive behavior endpoint using a workflow in KNIME. MethodsX, 2021, 8, 101330.                                                                                                | 0.7 | 9         |
| 12 | Evaluation of Neurotoxic Effects in Zebrafish Embryos by Automatic Measurement of Early Motor<br>Behaviors. Neuromethods, 2021, , 381-397.                                                                                                                       | 0.2 | 1         |
| 13 | Limitations and uncertainties of acute fish toxicity assessments can be reduced using alternative methods. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 20-32.                                                                                       | 0.9 | 17        |
| 14 | Comparative Assessment of the Sensitivity of Fish Earlyâ€Life Stage, <i>Daphnia</i> , and Algae Tests to<br>the Chronic Ecotoxicity of Xenobiotics: Perspectives for Alternatives to Animal Testing.<br>Environmental Toxicology and Chemistry, 2020, 39, 30-41. | 2.2 | 15        |
| 15 | Optimization of the spontaneous tail coiling test for fast assessment of neurotoxic effects in the zebrafish embryo using an automated workflow in KNIME®. Neurotoxicology and Teratology, 2020, 81, 106918.                                                     | 1.2 | 28        |
| 16 | A multi-omics concentration-response framework uncovers novel understanding of triclosan effects<br>in the chlorophyte Scenedesmus vacuolatus. Journal of Hazardous Materials, 2020, 397, 122727.                                                                | 6.5 | 25        |
| 17 | Yolk–Water Partitioning of Neutral Organic Compounds in the Model Organism Danio rerio.<br>Environmental Toxicology and Chemistry, 2020, 39, 1506-1516.                                                                                                          | 2.2 | 2         |
| 18 | Yolk Sac of Zebrafish Embryos as Backpack for Chemicals?. Environmental Science & Technology,<br>2020, 54, 10159-10169.                                                                                                                                          | 4.6 | 33        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Scientific Reports, 2019, 9, 9532.                                                                                                      | 1.6 | 26        |
| 20 | Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk<br>Assessment. Environmental Toxicology and Chemistry, 2019, 38, 1850-1865.                                                                         | 2.2 | 105       |
| 21 | Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: a review on how<br>experimental parameters impact the predictability of behavior changes. Environmental Sciences<br>Europe, 2019, 31, .                            | 2.6 | 50        |
| 22 | Elemental imaging (LA-ICP-MS) of zebrafish embryos to study the toxicokinetics of the acetylcholinesterase inhibitor naled. Analytical and Bioanalytical Chemistry, 2019, 411, 617-627.                                                            | 1.9 | 16        |
| 23 | Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens.<br>Toxicological Sciences, 2019, 167, 438-449.                                                                                                     | 1.4 | 79        |
| 24 | Zebrafish embryo and acute fish toxicity test show similar sensitivity for narcotic compounds. ALTEX:<br>Alternatives To Animal Experimentation, 2019, 36, 131-135.                                                                                | 0.9 | 8         |
| 25 | Species-specific developmental toxicity in rats and rabbits: Generation of a reference compound list for development of alternative testing approaches. Reproductive Toxicology, 2018, 76, 93-102.                                                 | 1.3 | 14        |
| 26 | Metaâ€analysis of fish early life stage tests—Association of toxic ratios and acuteâ€toâ€chronic ratios with<br>modes of action. Environmental Toxicology and Chemistry, 2018, 37, 955-969.                                                        | 2.2 | 17        |
| 27 | Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of<br>Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). Environmental<br>Toxicology and Chemistry, 2018, 37, 657-670. | 2.2 | 97        |
| 28 | An ecotoxicological view on neurotoxicity assessment. Environmental Sciences Europe, 2018, 30, 46.                                                                                                                                                 | 2.6 | 168       |
| 29 | DRomics: A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in<br>Ecological Risk Assessment. Environmental Science & Technology, 2018, 52, 14461-14468.                                                              | 4.6 | 37        |
| 30 | An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS ONE, 2018, 13, e0203087.                                                                                                  | 1.1 | 26        |
| 31 | Cellular Uptake Kinetics of Neutral and Charged Chemicals in <i>in Vitro</i> Assays Measured by Fluorescence Microscopy. Chemical Research in Toxicology, 2018, 31, 646-657.                                                                       | 1.7 | 29        |
| 32 | From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment<br>International, 2017, 99, 97-106.                                                                                                                | 4.8 | 146       |
| 33 | Zebrafish embryo tolerance to environmental stress factors—Concentration–dose response analysis<br>of oxygen limitation, pH, and UVâ€light irradiation. Environmental Toxicology and Chemistry, 2017, 36,<br>682-690.                              | 2.2 | 32        |
| 34 | Zebrafish biosensor for toxicant induced muscle hyperactivity. Scientific Reports, 2016, 6, 23768.                                                                                                                                                 | 1.6 | 20        |
| 35 | Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.<br>Chemosphere, 2016, 164, 164-173.                                                                                                                 | 4.2 | 71        |
| 36 | <i>In Response</i> : Quantitative adverse outcome pathways for prediction of adverse effects—An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1935-1940.                                                                 | 2.2 | 2         |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The role of chemical speciation, chemical fractionation and calcium disruption in manganese-induced developmental toxicity in zebrafish (Danio rerio) embryos. Journal of Trace Elements in Medicine and Biology, 2015, 32, 209-217.          | 1.5 | 15        |
| 38 | Differential sensitivity in embryonic stages of the zebrafish (Danio rerio): The role of toxicokinetics<br>for stage-specific susceptibility for azinphos-methyl lethal effects. Aquatic Toxicology, 2015, 166, 36-41.                        | 1.9 | 29        |
| 39 | Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos.<br>Reproductive Toxicology, 2015, 57, 10-20.                                                                                              | 1.3 | 23        |
| 40 | Fish Embryo Toxicity Test: Identification of Compounds with Weak Toxicity and Analysis of Behavioral<br>Effects To Improve Prediction of Acute Toxicity for Neurotoxic Compounds. Environmental Science<br>& Technology, 2015, 49, 7002-7011. | 4.6 | 99        |
| 41 | Identification and Characterization of Androgen-Responsive Genes in Zebrafish Embryos.<br>Environmental Science & Technology, 2015, 49, 11789-11798.                                                                                          | 4.6 | 42        |
| 42 | Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays. Chemosphere, 2015, 120, 321-327.                                                                                   | 4.2 | 46        |
| 43 | Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories. Regulatory Toxicology and Pharmacology, 2014, 69, 572-579.                                                                     | 1.3 | 26        |
| 44 | Retinoid-like activity and teratogenic effects of cyanobacterial exudates. Aquatic Toxicology, 2014, 155, 283-290.                                                                                                                            | 1.9 | 37        |
| 45 | Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In<br>Vitro Bioassays. Environmental Science & Technology, 2014, 48, 1940-1956.                                                                    | 4.6 | 367       |
| 46 | Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regulatory Toxicology and Pharmacology, 2014, 70, 629-640.                                                                        | 1.3 | 291       |
| 47 | Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos. Aquatic Toxicology, 2014, 154, 221-229.                                                                       | 1.9 | 34        |
| 48 | OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo<br>toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology, 2014, 69,<br>496-511.                        | 1.3 | 192       |
| 49 | Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos. PLoS ONE, 2014, 9, e90619.                                                                                                                           | 1.1 | 22        |
| 50 | A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.                                                              | 1.3 | 139       |
| 51 | Transgenic (cyp19a1b-GFP) zebrafish embryos as a tool for assessing combined effects of oestrogenic chemicals. Aquatic Toxicology, 2013, 138-139, 88-97.                                                                                      | 1.9 | 39        |
| 52 | Alternatives to <i>in vivo</i> tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians – screening for estrogen, androgen and thyroid hormone disruption. Critical Reviews in Toxicology, 2013, 43, 45-72.               | 1.9 | 60        |
| 53 | Zebrafish embryos as an alternative model for screening of drug-induced organ toxicity. Archives of Toxicology, 2013, 87, 767-769.                                                                                                            | 1.9 | 49        |
| 54 | Predicting Adult Fish Acute Lethality with the Zebrafish Embryo: Relevance of Test Duration,<br>Endpoints, Compound Properties, and Exposure Concentration Analysis. Environmental Science &<br>Technology, 2012, 46, 9690-9700.              | 4.6 | 123       |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mixture Toxicity Revisited from a Toxicogenomic Perspective. Environmental Science &<br>Technology, 2012, 46, 2508-2522.                                                                                            | 4.6 | 135       |
| 56 | Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132.           | 1.3 | 491       |
| 57 | Transcriptional responses of zebrafish embryos exposed to potential sonic hedgehog pathway<br>interfering compounds deviate from expression profiles of cyclopamine. Reproductive Toxicology,<br>2012, 33, 254-263. | 1.3 | 12        |
| 58 | Editorial. Reproductive Toxicology, 2012, 33, 127.                                                                                                                                                                  | 1.3 | 4         |
| 59 | Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical fresh water ecosystems. Aquatic Toxicology, 2011, 103, 46-52.                   | 1.9 | 36        |
| 60 | Adverse Outcome Pathways during Early Fish Development: A Conceptual Framework for<br>Identification of Chemical Screening and Prioritization Strategies. Toxicological Sciences, 2011, 123,<br>349-358.            | 1.4 | 79        |
| 61 | Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle<br>Activity Dependent hspb11 Expression. PLoS ONE, 2011, 6, e29063.                                                  | 1.1 | 30        |
| 62 | Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics, 2010, 11, 65.                                                                   | 1.2 | 42        |
| 63 | Pharmaceutical Contaminants in Urban Water Cycles: A Discussion of Novel Concepts for Environmental Risk Assessment. Environmental Pollution, 2010, , 227-243.                                                      | 0.4 | 1         |
| 64 | Synthesis and biological evaluation of SANT-2 and analogues as inhibitors of the hedgehog signaling pathway. Bioorganic and Medicinal Chemistry, 2009, 17, 4943-4954.                                               | 1.4 | 41        |
| 65 | Gene expression analysis in zebrafish embryos: A potential approach to predict effect concentrations in the fish early life stage test. Environmental Toxicology and Chemistry, 2009, 28, 1970-1978.                | 2.2 | 46        |
| 66 | Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquatic Toxicology, 2009, 93, 91-99.                                 | 1.9 | 82        |
| 67 | Tungsten carbide and tungsten carbide cobalt nanoparticle toxicity: The role of cellular particle uptake, leached ions and cobalt bioavailability. Toxicology Letters, 2009, 189, S185.                             | 0.4 | 2         |
| 68 | Effects of Endocrine Disrupters on Sexual, Gonadal Development in Fish. Sexual Development, 2009, 3,<br>136-151.                                                                                                    | 1.1 | 111       |
| 69 | Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells<br><i>in Vitro</i> . Environmental Health Perspectives, 2009, 117, 530-536.                                         | 2.8 | 121       |
| 70 | The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environmental Science and Pollution Research, 2008, 15, 394-404.                                            | 2.7 | 472       |
| 71 | Molecular biomarkers of endocrine disruption in small model fish. Molecular and Cellular<br>Endocrinology, 2008, 293, 57-70.                                                                                        | 1.6 | 170       |
| 72 | The role of cyp1a and heme oxygenase 1 gene expression for the toxicity of 3,4-dichloroaniline in zebrafish (Danio rerio) embryos. Aquatic Toxicology, 2008, 86, 112-120.                                           | 1.9 | 26        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquatic Toxicology, 2008, 90, 128-137.                                                                                     | 1.9 | 49        |
| 74 | Evaluation of health risks of nano- and microparticles. Powder Metallurgy, 2008, 51, 8-9.                                                                                                                                  | 0.9 | 11        |
| 75 | Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquatic<br>Toxicology, 2007, 81, 355-364.                                                                                   | 1.9 | 112       |
| 76 | Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish and Shellfish Immunology, 2007, 23, 901-905.                                             | 1.6 | 90        |
| 77 | Of fine powders, hardmetals, hazard and health risk. Metal Powder Report, 2007, 62, 12-14.                                                                                                                                 | 0.3 | 4         |
| 78 | ANALYSIS OF ESTROGENIC EFFECTS BY QUANTIFICATION OF GREEN FLUORESCENT PROTEIN IN JUVENILE FISH OF A TRANSGENIC MEDAKA. Environmental Toxicology and Chemistry, 2005, 24, 2553.                                             | 2.2 | 19        |
| 79 | Naringenin-type flavonoids show different estrogenic effects in mammalian and teleost test systems.<br>Biochemical and Biophysical Research Communications, 2005, 326, 909-916.                                            | 1.0 | 30        |
| 80 | Germ cell-less expression in medaka (Oryzias latipes). Molecular Reproduction and Development, 2004, 67, 15-18.                                                                                                            | 1.0 | 7         |
| 81 | Induction of vitellogenin in vivo and in vitro in the model teleost medaka (Oryzias latipes):<br>comparison of gene expression and protein levels. Marine Environmental Research, 2004, 57, 235-244.                       | 1.1 | 87        |
| 82 | Hormonal Induction and Stability of Monosex Populations in the Medaka (Oryzias latipes): Expression of Sex-Specific Marker Genes. Biology of Reproduction, 2003, 69, 673-678.                                              | 1.2 | 42        |
| 83 | 17-α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquatic Toxicology, 2000, 50, 363-373.                                                   | 1.9 | 219       |
| 84 | Induction of CYP1A in Primary Cultures of Rainbow Trout (Oncorhynchus mykiss) Liver Cells:<br>Concentration–Response Relationships of Four Model Substances. Ecotoxicology and Environmental<br>Safety, 1999, 43, 252-260. | 2.9 | 35        |
| 85 | Viability and differential function of rainbow trout liver cells in primary culture: Coculture with<br>two permanent fish cells. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 762-771.                  | 0.7 | 23        |
| 86 | The biosynthesis pathway of di-myo-inositol-1,1′-phosphate in Pyrococcus woesei. FEMS Microbiology<br>Letters, 1998, 168, 37-42.                                                                                           | 0.7 | 13        |
| 87 | Development of a monoclonal antibody for ELISA of CYP1A in primary cultures of rainbow trout<br>Oncorhynchus mykiss hepatocytes. Biomarkers, 1997, 2, 287-294.                                                             | 0.9 | 29        |
| 88 | Di-myo-inositol-1, 1′-phosphate: A new inositol phosphate isolated fromPyrococcus woesei. FEBS<br>Letters, 1992, 306, 239-242.                                                                                             | 1.3 | 159       |
| 89 | Fish embryos as alternative models for drug safety evaluation. , 0, , 244-268.                                                                                                                                             |     | 0         |