Wei Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5741141/publications.pdf

Version: 2024-02-01

		933447	839539	
18	306	10	18	
papers	citations	h-index	g-index	
10	10	10	502	
19	19	19	583	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Effects of fabrication atmosphere conditions on the physico-chemical properties of garnet electrolyte. Ionics, 2022, 28, 2673-2683.	2.4	1
2	Electrochemistry of rechargeable aqueous zinc/zinc-sulphate/manganese-oxide batteries and methods for preparation of high-performance cathodes. Journal of Materials Chemistry A, 2022, 10, 15415-15426.	10.3	6
3	Microwave plasma-induced growth of vertical graphene from fullerene soot. Carbon, 2021, 172, 26-30.	10.3	18
4	Interfacial modification enabled room temperature solid-state lithium–metal batteries. Ionics, 2021, 27, 1569-1578.	2.4	2
5	Enhanced anchoring and catalytic conversion of polysulfides by iron phthalocyanine for graphene-based Li–S batteries. Ionics, 2021, 27, 3007-3016.	2.4	4
6	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. Journal of Power Sources, 2020, 479, 228795.	7.8	16
7	Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. Carbon, 2020, 167, 11-18.	10.3	18
8	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.	10.3	32
9	A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium†sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1807-1815.	5.9	19
10	Nano–Al as a promising cathode additive for lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 837, 116-122.	3.8	1
11	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. Communications Chemistry, 2018, $1,\ldots$	4.5	32
12	Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Scientific Reports, 2017, 7, 40259.	3.3	59
13	Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. PLoS ONE, 2017, 12, e0171192.	2.5	25
14	Preparation of catalytic films of the Au nanoparticle–carbon composite tubular arrays. Chemical Communications, 2015, 51, 6333-6336.	4.1	8
15	Substrate-independent and large-area synthesis of carbon nanotube thin films using ZnO nanorods as template and dopamine as carbon precursor. Carbon, 2015, 83, 275-281.	10.3	29
16	Template-assisted evaporation deposition of Au nanoparticles for fabrication of hierarchical porous Au film modified electrodes and their salt concentration-dependent capacitive current. Journal of Electroanalytical Chemistry, 2014, 714-715, 116-121.	3.8	1
17	Single-walled carbon nanotube ensembles modified gold ultramicroelectrodes prepared by self-assembly deposition method with 1-(1-pyrenyl)-1-methanethiol monolayer as an adhesion layer. Electrochemistry Communications, 2012, 20, 163-166.	4.7	5
18	Al and Ni co-doped ZnO films with room temperature ferromagnetism, low resistivity and high transparence. Materials Chemistry and Physics, 2011, 126, 797-803.	4.0	22