List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioactive Materials, 2022, 7, 112-125.	15.6	78
2	Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioactive Materials, 2022, 7, 504-514.	15.6	43
3	Exploration of copper-cysteamine nanoparticles as an efficient heterogeneous Fenton-like catalyst for wastewater treatment. Materials Today Physics, 2022, 22, 100587.	6.0	14
4	Exploration of nitrogen-doped grape peels carbon dots for baicalin detection. Materials Today Physics, 2022, 22, 100576.	6.0	33
5	The exploration of quantum dot-molecular beacon based MoS2 fluorescence probing for myeloma-related Mirnas detection. Bioactive Materials, 2022, 17, 360-368.	15.6	19
6	Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduction and Targeted Therapy, 2022, 7, 70.	17.1	88
7	Up-conversion luminescence performance and application of GdOF:Yb,Er porous spheres obtained by calcining NaGdF4:Yb,Er microcrystals. Applied Surface Science, 2022, 587, 152820.	6.1	8
8	Luminescence Reduced Graphene Oxide Based Photothermal Purification of Seawater for Drinkable Purpose. Nanomaterials, 2022, 12, 1622.	4.1	3
9	Exploration of Roomâ€Temperature Phosphorescence and New Mechanism on Carbon Dots in a Polyacrylamide Platform and their Applications for Antiâ€Counterfeiting and Information Encryption. Advanced Optical Materials, 2022, 10, .	7.3	57
10	Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. Nanomaterials, 2022, 12, 1787.	4.1	10
11	Tuning Multicolor Emission of Manganese-Activated Gallogermanate Nanophosphors by Regulating Mn Ions Occupying Sites for Multiple Anti-Counterfeiting Application. Nanomaterials, 2022, 12, 2029.	4.1	9
12	The investigation of triadic silica-supported polyhexamethylene guanidine@nano-hydroxyapatite nanocomposites for Cr (VI) detection. Materials Today Advances, 2022, 15, 100268.	5.2	6
13	Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials, 2022, 12, 2210.	4.1	14
14	Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioactive Materials, 2021, 6, 1541-1554.	15.6	160
15	Striking luminescence phenomena of carbon dots and their applications as a double ratiometric fluorescence probes for H2S detection. Materials Today Physics, 2021, 17, 100328.	6.0	40
16	A novel inequivalent double-site substituted red phosphor Li ₄ AlSbO ₆ :Mn ⁴⁺ with high color purity: its structure, photoluminescence properties, and application in warm white LEDs. Journal of Materials Chemistry C, 2021, 9, 13236-13246.	5.5	28
17	Preparation of Carbon-Covered Phosphorus-Modified Alumina with Large Pore Size and Adsorption of Rhodamine B. Nanomaterials, 2021, 11, 799.	4.1	3
18	Non-invasive Optical Technical Identification of Red Pigments on Chinese Paper Notes. Coatings, 2021, 11. 410.	2.6	1

#	Article	IF	CITATIONS
19	Improved stability and efficiency of perovskite via a simple solid diffusion method. Materials Today Physics, 2021, 18, 100374.	6.0	19
20	Characterization of nanoparticles combining polyamine detection with photodynamic therapy. Communications Biology, 2021, 4, 803.	4.4	13
21	Construction of Novel Nanocomposites (Cu-MOF/GOD@HA) for Chemodynamic Therapy. Nanomaterials, 2021, 11, 1843.	4.1	24
22	A new type of cuprous-cysteamine sensitizers: Synthesis, optical properties and potential applications. Materials Today Physics, 2021, 19, 100435.	6.0	12
23	Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials, 2021, 11, 2474.	4.1	35
24	Nano-octahedral bimetallic Fe/Eu-MOF preparation and dual model sensing of serum alkaline phosphatase (ALP) based on its peroxidase-like property and fluorescence. Materials Science and Engineering C, 2021, 129, 112404.	7.3	33
25	Cu-Based Metal–Organic Framework Nanoparticles for Sensing Cr(VI) Ions. ACS Applied Nano Materials, 2021, 4, 802-810.	5.0	41
26	Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. Journal of Nanobiotechnology, 2021, 19, 387.	9.1	45
27	Chemical unit co-substitution for a new far-red-emitting phosphor Ca3-6(NaLu)3LiSbO6:Mn4+ to achieve high quantum efficiency and superb thermal stability. Materials Today Advances, 2021, 12, 100193.	5.2	6
28	A new nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue. Materials Today Advances, 2021, 12, 100190.	5.2	17
29	Highly Efficient Metal-Free Two-Dimensional Luminescent Melem Nanosheets for Bioimaging. ACS Applied Materials & Interfaces, 2020, 12, 2145-2151.	8.0	27
30	Rational Design of High-Performance Donor–Linker–Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Analytical Chemistry, 2020, 92, 2019-2026.	6.5	54
31	Combination of Disulfiram and Copper–Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer. ACS Applied Bio Materials, 2020, 3, 7147-7157.	4.6	19
32	The exploration of novel fluorescent copper–cysteamine nanosheets for sequential detection of Fe ³⁺ and dopamine and fabrication of molecular logic circuits. Journal of Materials Chemistry C, 2020, 8, 12935-12942.	5.5	23
33	Self-assembly of chimeric peptides toward molecularly defined hexamers with controlled multivalent ligand presentation. Chemical Communications, 2020, 56, 7128-7131.	4.1	4
34	Use of copper-cysteamine nanoparticles to simultaneously enable radiotherapy, oxidative therapy and immunotherapy for melanoma treatment. Signal Transduction and Targeted Therapy, 2020, 5, 58.	17.1	42
35	Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. Journal of Materials Chemistry B, 2020, 8, 5234-5244.	5.8	27
36	Diketopyrrolopyrrole: An emerging phototherapy agent in fighting cancer. Dyes and Pigments, 2020, 181, 108599.	3.7	30

#	Article	IF	CITATIONS
37	Effects of Nanoparticle Size and Radiation Energy on Copper-Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy. Nanomaterials, 2020, 10, 1087.	4.1	22
38	Optimization of Eu ³⁺ Luminescence in DMSO as a Multiparameter Method for Trace Water Detection. ACS Omega, 2020, 5, 6919-6927.	3.5	6
39	Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment. ACS Applied Bio Materials, 2020, 3, 1804-1814.	4.6	69
40	A powerful combination of copper-cysteamine nanoparticles with potassium iodide for bacterial destruction. Materials Science and Engineering C, 2020, 110, 110659.	7.3	35
41	CuS@PDA–FA nanocomposites: a dual stimuli-responsive DOX delivery vehicle with ultrahigh loading level for synergistic photothermal–chemotherapies on breast cancer. Journal of Materials Chemistry B, 2020, 8, 1396-1404.	5.8	33
42	Poly(ionic liquid)-Gated CuCo ₂ S ₄ for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2020, 12, 9000-9007.	8.0	23
43	X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16823-16828.	7.1	119
44	Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. Journal of Materials Chemistry B, 2019, 7, 6742-6750.	5.8	49
45	Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia. Materials Science and Engineering C, 2019, 104, 109979.	7.3	46
46	The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine, 2019, 14, 2027-2043.	3.3	30
47	Theoretical studies on the energy structures and optical properties of copper cysteamine – a novel sensitizer. Physical Chemistry Chemical Physics, 2019, 21, 21084-21093.	2.8	7
48	Exploration of TiO2 nanoparticle mediated microdynamic therapy on cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 272-281.	3.3	51
49	Two D-Ï€-A Schiff-Base-Functionalized Silica Gel Adsorbents for Preconcentration of Copper Ions in Foods and Water for Detection. Analytical Chemistry, 2019, 91, 6103-6110.	6.5	28
50	Investigation of copper-cysteamine nanoparticles as a new photosensitizer for anti-hepatocellular carcinoma. Cancer Biology and Therapy, 2019, 20, 812-825.	3.4	29
51	Application of the Ethyl Acetate Extract of Cichorium as a Potential Photosensitizer in Photodynamic Therapy Induces Apoptosis and Autophagy in Colorectal Cancer Cell Lines via the Protein Kinase R-Like Endoplasmic Reticulum Kinase Pathway. Journal of Biomedical Nanotechnology, 2019, 15, 1867-1880.	1.1	5
52	A facile method for the synthesis of copper–cysteamine nanoparticles and study of ROS production for cancer treatment. Journal of Materials Chemistry B, 2019, 7, 6630-6642.	5.8	57
53	Raman spectroscopy analysis of new copperâ€cysteamine photosensitizer. Journal of Raman Spectroscopy, 2019, 50, 522-527.	2.5	12
54	Detection of Hexavalent Chromium by Copper Sulfide Nanocomposites. Analytical Chemistry, 2019, 91, 2058-2065.	6.5	40

#	Article	IF	CITATIONS
55	Exploration of Copper-Cysteamine Nanoparticles as a New Type of Agents for Antimicrobial Photodynamic Inactivation. Journal of Biomedical Nanotechnology, 2019, 15, 2142-2148.	1.1	28
56	Nanosonosensitization by Using Copper–Cysteamine Nanoparticles Augmented Sonodynamic Cancer Treatment. Particle and Particle Systems Characterization, 2018, 35, 1700378.	2.3	47
57	Plasmonic CuS nanodisk assembly based composite nanocapsules for NIR-laser-driven synergistic chemo-photothermal cancer therapy. Journal of Materials Chemistry B, 2018, 6, 1035-1043.	5.8	29
58	Neat1-miRNA204-5p-PI3K-AKT axis as a potential mechanism for photodynamic therapy treated colitis in mice. Photodiagnosis and Photodynamic Therapy, 2018, 24, 349-357.	2.6	16
59	Enhancing the photothermal conversion efficiency of graphene oxide by doping with NaYF4: Yb, Er upconverting luminescent nanocomposites. Materials Research Bulletin, 2018, 106, 365-370.	5.2	27
60	Electronic structure, photoluminescence and phosphorescence properties in Sr2ScGaO5:Sm3+. Dyes and Pigments, 2018, 157, 259-266.	3.7	21
61	Exploration of Graphitic-C ₃ N ₄ Quantum Dots for Microwave-Induced Photodynamic Therapy. ACS Biomaterials Science and Engineering, 2017, 3, 1836-1844.	5.2	78
62	CuS nanoagents for photodynamic and photothermal therapies: Phenomena and possible mechanisms. Photodiagnosis and Photodynamic Therapy, 2017, 19, 5-14.	2.6	104
63	Investigation of Copper Cysteamine Nanoparticles as a New Type of Radiosensitiers for Colorectal Carcinoma Treatment. Scientific Reports, 2017, 7, 9290.	3.3	56
64	Melem: an efficient metal-free luminescent material. Journal of Materials Chemistry C, 2017, 5, 10746-10753.	5.5	61
65	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Technology, 2017, 51, 10274-10281.	10.0	129
66	Exosome-Transmitted IncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell, 2016, 29, 653-668.	16.8	874
67	Synthesis and conjugation of Sr2MgSi2O7:Eu2+, Dy3+ water soluble afterglow nanoparticles for photodynamic activation. Photodiagnosis and Photodynamic Therapy, 2016, 16, 90-99.	2.6	34
68	Nanoscale Photodynamic Agents for Colorectal Cancer Treatment: A Review. Journal of Biomedical Nanotechnology, 2016, 12, 1348-1373.	1.1	9
69	A New Modality for Cancer Treatment—Nanoparticle Mediated Microwave Induced Photodynamic Therapy. Journal of Biomedical Nanotechnology, 2016, 12, 1835-1851.	1.1	94
70	Green Upconversion Emissions in Er ³⁺ /Yb ³⁺ Co-Doped CaMoO ₄ Prepared by Microwave-Assisted Metathetic Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 802-806.	0.9	6
71	The Recent Progress in Photothermal Agents for Cancer Therapy. Reviews in Nanoscience and Nanotechnology, 2016, 5, 93-118.	0.4	6
72	A Nonâ€rareâ€Earth Ions Selfâ€Activated White Emitting Phosphor under Single Excitation. Advanced Functional Materials, 2015, 25, 6833-6838.	14.9	48

#	Article	IF	CITATIONS
73	Active Targeting of Nano-Photosensitizer Delivery Systems for Photodynamic Therapy of Cancer Stem Cells. Journal of Biomedical Nanotechnology, 2015, 11, 531-554.	1.1	53
74	Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles. PLoS ONE, 2015, 10, e0141050.	2.5	110
75	A New X-Ray Activated Nanoparticle Photosensitizer for Cancer Treatment. Journal of Biomedical Nanotechnology, 2014, 10, 1501-1508.	1.1	115
76	A new Cu–cysteamine complex: structure and optical properties. Journal of Materials Chemistry C, 2014, 2, 4239-4246.	5.5	70
77	X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine, 2014, 9, 2339-2351.	3.3	156
78	Optical Storage Based on Reversible Optical Processes in Eu ³ ⁺ Doped Nanoparticles. Reviews in Nanoscience and Nanotechnology, 2013, 2, 143-146.	0.4	12
79	X-ray luminescence of CdTe quantum dots in LaF3:Ce/CdTe nanocomposites. Applied Physics Letters, 2012, 100, 013109.	3.3	24
80	Local Field Enhanced Au/CuS Nanocomposites as Efficient Photothermal Transducer Agents for Cancer Treatment. Journal of Biomedical Nanotechnology, 2012, 8, 883-890.	1.1	98
81	Hypersensitive Luminescence of Eu ³⁺ in Dimethyl Sulfoxide As a New Probing for Water Measurement. Analytical Chemistry, 2011, 83, 1879-1882.	6.5	41
82	Enhancement of Afterglow in ZnS:Cu,Co Water-Soluble Nanoparticles by Aging. Journal of Physical Chemistry C, 2011, 115, 8940-8944.	3.1	21
83	Luminescence of Lanthanide–Dimethyl Sulfoxide Compound Solutions. Journal of Physical Chemistry B, 2011, 115, 9352-9359.	2.6	9
84	Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010, 5, 1161-1171.	3.3	545
85	Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnology, 2010, 1, 19-28.	3.7	64
86	Luminescence enhancement of CdTe nanostructures in LaF3:Ce/CdTe nanocomposites. Journal of Applied Physics, 2010, 108, .	2.5	25
87	Formation and Luminescence Phenomena of LaF ₃ :Ce ³⁺ Nanoparticles and Lanthanideâ^'Organic Compounds in Dimethyl Sulfoxide. Journal of Physical Chemistry C, 2010, 114, 826-831.	3.1	40
88	Dose dependent x-ray luminescence in MgF2:Eu2+, Mn2+ phosphors. Journal of Applied Physics, 2008, 103, 113103.	2.5	25
89	The Effects of Aging on the Luminescence of PEG-Coated Water-Soluble ZnO Nanoparticle Solutions. Journal of Physical Chemistry C, 2008, 112, 14292-14296.	3.1	28
90	Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 2008, 92, .	3.3	162

#	Article	IF	CITATIONS
91	Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 2008, 92, .	3.3	71
92	Nanoparticle Self-Lighting Photodynamic Therapy for Cancer Treatment. Journal of Biomedical Nanotechnology, 2008, 4, 369-376.	1.1	93
93	Phototoxicity of Zinc Oxide Nanoparticle Conjugatesin Human Ovarian Cancer NIH: OVCAR-3 Cells. Journal of Biomedical Nanotechnology, 2008, 4, 432-438.	1.1	71
94	Nanoparticle Fluorescence Based Technology for Biological Applications. Journal of Nanoscience and Nanotechnology, 2008, 8, 1019-1051.	0.9	138
95	X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103, .	2.5	70
96	Dose dependence of x-ray luminescence from CaF2:Eu2+, Mn2+ phosphors. Applied Physics Letters, 2007, 91, .	3.3	19
97	Upconversion Luminescence of Colloidal CdS and ZnCdS Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 16261-16266.	3.1	54
98	Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. Journal of Nanoscience and Nanotechnology, 2006, 6, 1159-1166.	0.9	486
99	New observations on the luminescence decay lifetime of Mn2+ in ZnS:Mn2+ nanoparticles. Journal of Chemical Physics, 2005, 123, 124707.	3.0	51
100	Upconversion luminescence from CdSe nanoparticles. Journal of Chemical Physics, 2005, 122, 224708.	3.0	69
101	Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots1. Academic Radiology, 2005, 12, 313-323.	2.5	155
102	Upconversion luminescence of CdTe nanoparticles. Physical Review B, 2005, 71, .	3.2	79
103	Upconversion luminescence of Eu3+ and Mn2+ in ZnS:Mn2+, Eu3+ codoped nanoparticles. Journal of Applied Physics, 2004, 95, 667-672.	2.5	54
104	Full-Color Emission and Temperature Dependence of the Luminescence in Poly-P-phenylene ethynyleneâ^'ZnS/Mn2+Composite Particles. Journal of Physical Chemistry B, 2003, 107, 6544-6551.	2.6	40
105	Voltage Tunable Electroluminescence of CdTe Nanoparticle Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2002, 2, 47-53.	0.9	50
106	Structure, Luminescence, and Dynamics of Eu2O3Nanoparticles in MCM-41. Journal of Physical Chemistry B, 2002, 106, 7034-7041.	2.6	82
107	Nanoparticle Luminescence Thermometry. Journal of Physical Chemistry B, 2002, 106, 11203-11209.	2.6	227
108	Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. Journal of Applied Physics, 2001, 89, 1120-1129.	2.5	185

#	Article	IF	CITATIONS
109	Up-conversion luminescence ofMn2+inZnS:Mn2+nanoparticles. Physical Review B, 2001, 64, .	3.2	70
110	Luminescence enhancement of EuS nanoclusters in zeolite. Applied Physics Letters, 2000, 76, 2328-2330.	3.3	51
111	Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. Journal of Applied Physics, 2000, 88, 1424-1431.	2.5	119
112	Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+,Sm3+ phosphors. Journal of Physics and Chemistry of Solids, 1999, 60, 371-378.	4.0	17
113	Formation, structure and fluorescence of CdS clusters in a mesoporous zeolite. Solid State Communications, 1998, 105, 129-134.	1.9	54
114	Thermoluminescence of ZnS nanoparticles. Applied Physics Letters, 1997, 70, 1465-1467.	3.3	134
115	Some new observation on the formation and optical properties of CdS clusters in zeolite-Y. Solid	1.9	52