Alan Costa dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum battery based on quantum discord at room temperature. Quantum Science and Technology, 2022, 7, 025020.	5.8	19
2	Enhancing self-discharging process with disordered quantum batteries. Physical Review E, 2022, 105, .	2.1	10
3	Entanglement-enhanced quantum rectification. Physical Review A, 2022, 105, .	2.5	11
4	Generating long-lived entangled states with free-space collective spontaneous emission. Physical Review A, 2022, 105, .	2.5	5
5	Quantum Wheatstone Bridge. Physical Review Letters, 2022, 128, .	7.8	6
6	Quantum adiabatic brachistochrone for open systems. Physical Review A, 2021, 103, .	2.5	4
7	Quantum advantage of two-level batteries in the self-discharging process. Physical Review E, 2021, 103, 042118.	2.1	25
8	Quantum gates by adiabatic and superadiabatic probabilistic controlled evolutions. Europhysics Letters, 2021, 134, 50005.	2.0	0
9	Charging power and stability of always-on transitionless driven quantum batteries. Europhysics Letters, 2021, 136, 23001.	2.0	10
10	Exergy of passive states: Waste energy after ergotropy extraction. Physical Review E, 2021, 104, 034134.	2.1	3
11	Generalized transitionless quantum driving for open quantum systems. Physical Review A, 2021, 104, .	2.5	6
12	Entanglement and coherence in quantum prisoner's dilemma. Quantum Information Processing, 2020, 19, 1.	2.2	6
13	Quantum thermodynamics in adiabatic open systems and its trapped-ion experimental realization. Npj Quantum Information, 2020, 6, .	6.7	14
14	Experimental observation of phase-transition-like behavior in an optical simulation of single-qubit game. Quantum Information Processing, 2020, 19, 1.	2.2	1
15	Entanglement, coherence, and charging process of quantum batteries. Physical Review E, 2020, 102, 052109.	2.1	46
16	Sufficient conditions for adiabaticity in open quantum systems. Physical Review A, 2020, 102, .	2.5	4
17	Stable and charge-switchable quantum batteries. Physical Review E, 2020, 101, 062114.	2.1	49
18	Optimizing NMR quantum information processing via generalized transitionless quantum driving. Europhysics Letters, 2020, 129, 30008.	2.0	15

Alan Costa dos Santos

#	Article	IF	CITATIONS
19	Non-Markovian effects on charging and self-discharging process of quantum batteries. New Journal of Physics, 2020, 22, 083007.	2.9	52
20	Optical simulation of a quantum thermal machine. Physical Review A, 2019, 100, .	2.5	17
21	Shortening time scale to reduce thermal effects in quantum transistors. Scientific Reports, 2019, 9, 10470.	3.3	6
22	Validation of quantum adiabaticity through non-inertial frames and its trapped-ion realization. Scientific Reports, 2019, 9, 10449.	3.3	4
23	Stable adiabatic quantum batteries. Physical Review E, 2019, 100, 032107.	2.1	81
24	Adiabatic quantum dynamics under decoherence in a controllable trapped-ion setup. Physical Review A, 2019, 99, .	2.5	7
25	Quantum gates by inverse engineering of a Hamiltonian. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 015501.	1.5	12
26	Generalized shortcuts to adiabaticity and enhanced robustness against decoherence. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 025301.	2.1	32
27	Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Information Processing, 2018, 17, 1.	2.2	10
28	Experimental implementation of generalized transitionless quantum driving. Optics Letters, 2018, 43, 3136.	3.3	34
29	Sobre a Dinâmica de PartÃculas Carregadas em Campos Elétrico e Magnético. Revista Brasileira De Ensino De Fisica, 2016, 39, .	0.2	0
30	O Computador Quântico da IBM e o IBM Quantum Experience. Revista Brasileira De Ensino De Fisica, 2016, 39, .	0.2	4
31	Energetic Cost of Superadiabatic Quantum Computation. Frontiers in ICT, 2016, 3, .	3.6	33
32	Shortcut to adiabatic gate teleportation. Physical Review A, 2016, 93, .	2.5	71
33	Superadiabatic Controlled Evolutions and Universal Quantum Computation. Scientific Reports, 2015, 5, 15775.	3.3	100
34	Experimental verification of the inertial theorem control protocols. New Journal of Physics, O, , .	2.9	1
35	Simulating single-spin dynamics on an IBM five-qubit chip. Revista Brasileira De Ensino De Fisica, 0, 42, .	0.2	0
36	Algoritmos quânticos com IBMQ Experience: Algoritmo de Deutsch-Jozsa. Revista Brasileira De Ensino De Fisica, 0, 44, .	0.2	1