Brandon C Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740571/publications.pdf

Version: 2024-02-01

430442 500791 1,449 29 18 28 citations h-index g-index papers 30 30 30 1117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spontaneous hair cell regeneration in the neonatal mouse cochlea $\langle i \rangle$ in vivo $\langle i \rangle$. Development (Cambridge), 2014, 141, 816-829.	1.2	293
2	Age-Dependent <i>In Vivo</i> Conversion of Mouse Cochlear Pillar and Deiters' Cells to Immature Hair Cells by Atoh1 Ectopic Expression. Journal of Neuroscience, 2012, 32, 6600-6610.	1.7	213
3	<i>In Vivo</i> Proliferative Regeneration of Balance Hair Cells in Newborn Mice. Journal of Neuroscience, 2012, 32, 6570-6577.	1.7	110
4	Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. ELife, 2017, 6, .	2.8	79
5	Conditional Gene Expression in the Mouse Inner Ear Using Cre-loxP. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 295-322.	0.9	77
6	Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development (Cambridge), 2019, 146, .	1.2	63
7	Regulation of p27Kip1 by Sox2 Maintains Quiescence of Inner Pillar Cells in the Murine Auditory Sensory Epithelium. Journal of Neuroscience, 2012, 32, 10530-10540.	1.7	61
8	In Vivo Proliferation of Postmitotic Cochlear Supporting Cells by Acute Ablation of the Retinoblastoma Protein in Neonatal Mice. Journal of Neuroscience, 2010, 30, 5927-5936.	1.7	60
9	Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea. Journal of Visualized Experiments, 2016, , .	0.2	55
10	Selective Ablation of Pillar and Deiters' Cells Severely Affects Cochlear Postnatal Development and Hearing in Mice. Journal of Neuroscience, 2013, 33, 1564-1576.	1.7	54
11	Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells. Frontiers in Cellular Neuroscience, 2018, 12, 120.	1.8	45
12	Nicotinic Cholinergic Receptors in the Rat Retina: Simple and Mixed Heteromeric Subtypes. Molecular Pharmacology, 2005, 68, 1656-1668.	1.0	44
13	Auditory Hair Cell-Specific Deletion of p27 ^{Kip1} in Postnatal Mice Promotes Cell-Autonomous Generation of New Hair Cells and Normal Hearing. Journal of Neuroscience, 2014, 34, 15751-15763.	1.7	39
14	The FBN rat model of aging: investigation of ABR waveforms and ribbon synapse changes. Neurobiology of Aging, 2018, 62, 53-63.	1.5	38
15	Transport of multiple nicotinic acetylcholine receptors in the rat optic nerve: high densities of receptors containing \hat{l} ±6 and \hat{l} 23 subunits. Journal of Neurochemistry, 2008, 105, 1924-1938.	2.1	34
16	Development of hair cell phenotype and calyx nerve terminals in the neonatal mouse utricle. Journal of Comparative Neurology, 2019, 527, 1913-1928.	0.9	28
17	Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. Journal of Physiology, 2017, 595, 5375-5385.	1.3	22
18	Characterization of Adult Vestibular Organs in 11 CreER Mouse Lines. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 381-399.	0.9	22

#	Article	IF	CITATIONS
19	Atoh 1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hearing Research, 2020, 385, 107838.	0.9	20
20	Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 227-245.	0.9	19
21	Expression of heat shock and cold shock proteins in the gorgonianLeptogorgia virgulata. The Journal of Experimental Zoology, 2003, 296A, 98-107.	1.4	15
22	Spontaneous hair cell regeneration in the neonatal mouse cochlea <i>in vivo</i> . Development (Cambridge), 2014, 141, 1599-1599.	1.2	14
23	The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen's Cells in the Mouse Cochlea. Journal of Neuroscience, 2020, 40, 9401-9413.	1.7	14
24	Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Scientific Reports, 2015, 4, 6885.	1.6	10
25	Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hearing Research, 2019, 376, 69-85.	0.9	6
26	Intratympanic Diltiazem-Chitosan Hydrogel as an Otoprotectant Against Cisplatin-Induced Ototoxicity in a Mouse Model. Otology and Neurotology, 2020, 41, 115-122.	0.7	5
27	The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. Journal of Neuroscience, 2021, 41, 6217-6233.	1.7	5
28	Generation of a ChAT mouse line without the early onset hearing loss typical of the C57BL/6J strain. Hearing Research, 2020, 388, 107896.	0.9	2
29	Anatomy and Development of the Inner Ear. , 2020, , 253-276.		1