Changlong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740487/publications.pdf

Version: 2024-02-01

19	519	12	19
papers	citations	h-index	g-index
19	19	19	924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Yttrium doping enhances the photoelectrochemical water splitting performance of ZnO nanorod array films. Journal of Alloys and Compounds, 2022, 896, 163144.	5.5	21
2	Thin films composed of Zr-doped In ₂ O ₃ grains rich in fracture surfaces and cracks for photoelectrochemical water oxidation. Dalton Transactions, 2022, 51, 2041-2049.	3.3	3
3	Multifunctional Magnetic Hydrogels Fabricated by Iron Oxide Nanoparticles Mediated Radical Polymerization. ACS Applied Polymer Materials, 2022, 4, 4373-4381.	4.4	4
4	One-dimensional ZnO micro/nanostructures: deep insight into the growth mechanism and fine control of the microscopic morphology. Dalton Transactions, 2021, 50, 3011-3019.	3.3	9
5	Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO2 nanorod arrays by enhancing the ultraviolet light conversion efficiency. Dalton Transactions, 2019, 48, 12096-12104.	3.3	11
6	Visible-light-driven photoelectrochemical water oxidation with Al doped TiO2 nanorod arrays. Journal of Alloys and Compounds, 2019, 790, 99-108.	5 . 5	13
7	Morphology-controlled \hat{l} ±-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation. Journal of Alloys and Compounds, 2017, 715, 230-236.	5 . 5	20
8	Synergistic Effect of Si Doping and Heat Treatments Enhances the Photoelectrochemical Water Oxidation Performance of TiO ₂ Nanorod Arrays. Advanced Functional Materials, 2017, 27, 1701575.	14.9	73
9	Comparative NO2-sensing in cobalt and metal-free porphyrin nanotubes. Journal of Colloid and Interface Science, 2017, 490, 129-136.	9.4	10
10	Room temperature NO2 sensor based on highly ordered porphyrin nanotubes. Journal of Colloid and Interface Science, 2016, 474, 51-57.	9.4	17
11	SnO2 nanocrystals with abundant oxygen vacancies: Preparation and room temperature NO2 sensing. Journal of Alloys and Compounds, 2016, 681, 43-49.	5. 5	92
12	Morphology-controlled self-assembly of a ferrocene–porphyrin based NO ₂ gas sensor: tuning the semiconducting nature via solvent–solute interaction. Journal of Materials Chemistry C, 2016, 4, 10471-10478.	5 . 5	23
13	Hydrothermal deposition of tungsten oxide monohydrate films and room temperature gas sensing performance. Journal of Alloys and Compounds, 2016, 656, 326-331.	5. 5	11
14	Morphology-controlled In ₂ O ₃ nanostructures enhance the performance of photoelectrochemical water oxidation. Nanoscale, 2015, 7, 3683-3693.	5.6	37
15	Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance. Journal of Alloys and Compounds, 2015, 637, 55-61.	5. 5	16
16	Growth of Indium Oxide Nanowalls on Patterned Conducting Substrates: Towards Direct Fabrication of Gas Sensors. Chemistry - an Asian Journal, 2012, 7, 1018-1025.	3.3	7
17	Indium oxide nanocrystals: Capping-agent-free synthesis, size-control mechanism, and high gas-sensing performance. Materials Chemistry and Physics, 2011, 125, 299-304.	4.0	23
18	In ₂ O ₃ Nanocrystals with a Tunable Size in the Range of 4â^10 nm:  One-Step Synthesis, Characterization, and Optical Properties. Journal of Physical Chemistry C, 2007, 111, 18039-18043.	3.1	43

#	Article	IF	CITATIONS
19	Lotus-Root-Like In ₂ O ₃ Nanostructures:  Fabrication, Characterization, and Photoluminescence Properties. Journal of Physical Chemistry C, 2007, 111, 13398-13403.	3.1	86