List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574031/publications.pdf Version: 2024-02-01

		23544	22147
210	13,543	58	113
papers	citations	h-index	g-index
213	213	213	13139
all docs	docs citations	times ranked	citing authors

ΥΠ-ΤΖΗ ΤΛ

#	Article	IF	CITATIONS
1	Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood, 2001, 98, 210-216.	0.6	869
2	Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood, 2000, 96, 2943-2950.	0.6	844
3	Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. Journal of Immunology, 2011, 186, 1840-1848.	0.4	841
4	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
5	Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood, 2008, 112, 1329-1337.	0.6	439
6	Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood, 2001, 98, 428-435.	0.6	399
7	Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 2009, 114, 371-379.	0.6	364
8	Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123, 3128-3138.	0.6	361
9	A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in WaldenstrA¶m macroglobulinemia. Blood, 2013, 122, 1222-1232.	0.6	306
10	Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 4607-4618.	3.2	271
11	A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood, 2014, 123, 706-716.	0.6	254
12	APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood, 2016, 127, 3225-3236.	0.6	244
13	Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell, 2009, 16, 309-323.	7.7	242
14	Role of B-Cell–Activating Factor in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment. Cancer Research, 2006, 66, 6675-6682.	0.4	212
15	Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Frontiers in Immunology, 2018, 9, 1821.	2.2	205
16	Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood, 2010, 116, 3227-3237.	0.6	202
17	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells <i>In vitro</i> and <i>In vivo</i> . Clinical Cancer Research, 2009, 15, 4028-4037.	3.2	200
18	Targeting the β-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7516-7521.	3.3	197

#	Article	IF	CITATIONS
19	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 4290-4300.	3.2	192
20	Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nature Communications, 2021, 12, 868.	5.8	173
21	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40–Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications. Cancer Research, 2005, 65, 11712-11720.	0.4	163
22	Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood, 2012, 120, 1877-1887.	0.6	162
23	Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Research, 2003, 63, 5850-8.	0.4	159
24	Human Anti-CD40 Antagonist Antibody Triggers Significant Antitumor Activity against Human Multiple Myeloma. Cancer Research, 2005, 65, 5898-5906.	0.4	146
25	Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy, 2015, 7, 1187-1199.	1.0	146
26	Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood, 2016, 128, 1590-1603.	0.6	139
27	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2018, 32, 2604-2616.	3.3	137
28	Mechanisms by which SGN-40, a Humanized Anti-CD40 Antibody, Induces Cytotoxicity in Human Multiple Myeloma Cells: Clinical Implications. Cancer Research, 2004, 64, 2846-2852.	0.4	126
29	CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Reports, 2015, 12, 622-635.	2.9	123
30	Clonal architecture of <i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like mutations in Waldenström Macroglobulinaemia. British Journal of Haematology, 2016, 172, 735-744.	1.2	122
31	Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic antiâ€myeloma activity <i>in vitro</i> and <i>in vivo</i> . British Journal of Haematology, 2010, 149, 537-549.	1.2	119
32	Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nature Communications, 2018, 9, 1716.	5.8	117
33	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13162-13167.	3.3	112
34	CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3–kinase/AKT/NF-κB signaling. Blood, 2003, 101, 2762-2769.	0.6	111
35	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	0.8	110
36	Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood, 2014, 124, 3250-3259.	0.6	109

#	Article	IF	CITATIONS
37	Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood, 2007, 110, 1656-1663.	0.6	106
38	Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. British Journal of Haematology, 2007, 138, 783-791.	1.2	102
39	Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discovery, 2015, 5, 972-987.	7.7	97
40	Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia, 2018, 32, 1932-1947.	3.3	95
41	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	0.6	89
42	The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nature Communications, 2016, 7, 10258.	5.8	87
43	Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease. Journal of Bone and Mineral Research, 2016, 31, 1225-1234.	3.1	85
44	CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood, 2002, 99, 1419-1427.	0.6	83
45	Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. Journal of Clinical Investigation, 2018, 128, 2487-2499.	3.9	80
46	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	15.2	79
47	The Impact of Clone Size on the Prognostic Value of Chromosome Aberrations by Fluorescence <i>In Situ</i> Hybridization in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 2148-2156.	3.2	76
48	Targeting the miR-221–222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Research, 2015, 75, 4384-4397.	0.4	76
49	Rational design of a trimeric APRIL-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Advances, 2019, 3, 3248-3260.	2.5	76
50	CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf–mediated interactions with bone marrow stromal cells. Blood, 2009, 113, 4309-4318.	0.6	75
51	MUC1-C drives MYC in multiple myeloma. Blood, 2016, 127, 2587-2597.	0.6	71
52	Elevated neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio and decreased platelet-to-lymphocyte ratio are associated with poor prognosis in multiple myeloma. Oncotarget, 2017, 8, 18792-18801.	0.8	71
53	Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Molecular Cancer Therapeutics, 2018, 17, 1454-1463.	1.9	70
54	B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opinion on Biological Therapy, 2019, 19, 1143-1156.	1.4	69

#	Article	IF	CITATIONS
55	Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: A Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders. Clinical Cancer Research, 2012, 18, 4850-4860.	3.2	66
56	Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Frontiers in Immunology, 2020, 11, 1771.	2.2	64
57	Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discovery, 2021, 2, 468-483.	2.6	64
58	Selective and Potent Akt Inhibition Triggers Anti-Myeloma Activities and Enhances Fatal Endoplasmic Reticulum Stress Induced by Proteasome Inhibition. Cancer Research, 2014, 74, 4458-4469.	0.4	63
59	A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity. Leukemia, 2019, 33, 171-180.	3.3	62
60	Adenovirus Vector-Based Purging of Multiple Myeloma Cells. Blood, 1998, 92, 4591-4601.	0.6	61
61	APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia, 2019, 33, 426-438.	3.3	59
62	A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood, 2016, 128, 249-252.	0.6	58
63	The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood, 2020, 136, 2334-2345.	0.6	58
64	SLC46A3 as a Potential Predictive Biomarker for Antibody–Drug Conjugates Bearing Noncleavable Linked Maytansinoid and Pyrrolobenzodiazepine Warheads. Clinical Cancer Research, 2018, 24, 6570-6582.	3.2	56
65	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	0.6	54
66	Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Annals of Hematology, 2015, 94, 257-264.	0.8	52
67	Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia, 2021, 35, 752-763.	3.3	52
68	Pyk2 promotes tumor progression in multiple myeloma. Blood, 2014, 124, 2675-2686.	0.6	51
69	Preclinical assessment of an antibody–PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia, 2019, 33, 766-771.	3.3	49
70	Emerging therapies for multiple myeloma. Expert Opinion on Emerging Drugs, 2009, 14, 99-127.	1.0	48
71	Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia, 2018, 32, 2626-2635.	3.3	48
72	Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia, 2020, 34, 196-209.	3.3	48

#	Article	IF	CITATIONS
73	Significant Biological Role of Sp1 Transactivation in Multiple Myeloma. Clinical Cancer Research, 2011, 17, 6500-6509.	3.2	47
74	Antibody-Based Therapies in Multiple Myeloma. Bone Marrow Research, 2011, 2011, 1-14.	1.7	46
75	Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Frontiers in Immunology, 2018, 9, 1822.	2.2	46
76	Ku86 Variant Expression and Function in Multiple Myeloma Cells Is Associated with Increased Sensitivity to DNA Damage. Journal of Immunology, 2000, 165, 6347-6355.	0.4	45
77	A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia, 2020, 34, 2150-2162.	3.3	45
78	Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Advances, 2021, 5, 2982-2986.	2.5	45
79	Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function. Blood, 2012, 119, 2074-2082.	0.6	43
80	Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia, 2018, 32, 1838-1841.	3.3	42
81	Translocation of Ku86/Ku70 to the multiple myeloma cell membrane. Experimental Hematology, 2002, 30, 212-220.	0.2	40
82	A novel immunogenic <scp>CS</scp> 1â€specific peptide inducing antigenâ€specific cytotoxic <scp>T</scp> lymphocytes targeting multiple myeloma. British Journal of Haematology, 2012, 157, 687-701.	1.2	40
83	BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers, 2020, 12, 1473.	1.7	40
84	The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Advances, 2020, 4, 4195-4207.	2.5	39
85	The impact of response kinetics for multiple myeloma in the era of novel agents. Blood Advances, 2019, 3, 2895-2904.	2.5	32
86	BAD partly reverses paclitaxel resistance in human ovarian cancer cells. Oncogene, 1998, 17, 2419-2427.	2.6	31
87	Halofuginone inhibits multiple myeloma growth <i>in vitro</i> and <i>in vivo</i> and enhances cytotoxicity of conventional and novel agents. British Journal of Haematology, 2012, 157, 718-731.	1.2	30
88	VIS832, a novel CD138-targeting monoclonal antibody, potently induces killing of human multiple myeloma and further synergizes with IMiDs or bortezomib in vitro and in vivo. Blood Cancer Journal, 2020, 10, 110.	2.8	28
89	Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia, 2022, 36, 138-154.	3.3	28
90	Novel epitope evoking CD138 antigenâ€specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. British Journal of Haematology, 2011, 155, 349-361.	1.2	26

#	Article	IF	CITATIONS
91	Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood, 2021, 137, 2360-2372.	0.6	26
92	Bruton's tyrosine kinase: oncotarget in myeloma. Oncotarget, 2012, 3, 913-914.	0.8	26
93	Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers, 2021, 13, 6136.	1.7	26
94	Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 5225-5237.	3.2	25
95	Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients. Blood, 2014, 124, 638-638.	0.6	25
96	Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today's treat-to-target era. Experimental Hematology and Oncology, 2017, 6, 20.	2.0	24
97	Polycomb-like Protein 3 Induces Proliferation and Drug Resistance in Multiple Myeloma and Is Regulated by miRNA-15a. Molecular Cancer Research, 2020, 18, 1063-1073.	1.5	22
98	Combination of a Selective HSP90α/l² Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	1.1	20
99	<scp>MUC</scp> 1â€C is a target in lenalidomide resistant multiple myeloma. British Journal of Haematology, 2017, 178, 914-926.	1.2	20
100	Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. Leukemia, 2020, 34, 578-588.	3.3	20
101	Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia, 2020, 34, 567-577.	3.3	20
102	Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clinical Cancer Research, 2016, 22, 6099-6109.	3.2	19
103	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	2.6	19
104	AMG 701 Potently Induces Anti-Multiple Myeloma (MM) Functions of T Cells and IMiDs Further Enhance Its Efficacy to Prevent MM Relapse In Vivo. Blood, 2019, 134, 135-135.	0.6	19
105	A new era of immune therapy in multiple myeloma. Blood, 2016, 128, 318-319.	0.6	17
106	Anti-BCMA BiTE® AMG 701 Potently Induces Specific T Cell Lysis of Human Multiple Myeloma (MM) Cells and Immunomodulation in the Bone Marrow Microenvironment. Blood, 2018, 132, 592-592.	0.6	17
107	TH17 Pathway and Associated Pro-Inflammatory Cytokines Promote Immune Dysfunction in Myeloma Blood, 2007, 110, 3517-3517.	0.6	15
108	<p>Immunotherapeutic and Targeted Approaches in Multiple Myeloma</p> . ImmunoTargets and Therapy, 2020, Volume 9, 201-215.	2.7	14

#	Article	IF	CITATIONS
109	BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clinical Cancer Research, 2021, 27, 5376-5388.	3.2	14
110	MicroRNAs 15a/16-1 function as tumor suppressor genes in multiple myeloma. Blood, 2010, , .	0.6	13
111	Cytogenetic and clinical marks for defining high-risk myeloma in the context of bortezomib treatment. Experimental Hematology, 2015, 43, 168-176.e2.	0.2	13
112	Targeting CD38 alleviates tumor-induced immunosuppression. Oncotarget, 2017, 8, 112166-112167.	0.8	13
113	Novel Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders,. Blood, 2011, 118, 3990-3990.	0.6	13
114	Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma. Antibodies, 2017, 6, 18.	1.2	12
115	Daratumumab Directly Induces Human Multiple Myeloma Cell Death and Acts Synergistically with Conventional and Novel Anti-Myeloma Drugs. Blood, 2010, 116, 3013-3013.	0.6	12
116	ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Science Advances, 2021, 7, .	4.7	11
117	Clonal phylogeny and evolution of critical cytogenetic aberrations in multiple myeloma at single-cell level by QM-FISH. Blood Advances, 2022, 6, 441-451.	2.5	11
118	Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes. Nature Communications, 2022, 13, .	5.8	11
119	Biallelic Loss of BCMA Triggers Resistance to Anti-BCMA CAR T Cell Therapy in Multiple Myeloma. Blood, 2020, 136, 14-14.	0.6	10
120	BCMA CAR T-cell therapy arrives for multiple myeloma: a reality. Annals of Translational Medicine, 2018, 6, S93-S93.	0.7	10
121	Sulforaphane and PEITC Augment Activity of Conventional and Novel Anti-Myeloma Drugs. Blood, 2008, 112, 2648-2648.	0.6	10
122	Identification and validation of ecto-5' nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer Journal, 2022, 12, 50.	2.8	9
123	YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 2020, 136, 468-479.	0.6	8
124	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	2.6	8
125	Primary Plasma Cell Leukemia: Real-World Retrospective Study of 46 Patients From a Single-Center Study in China. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e652-e659.	0.2	7
126	Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Communications Biology, 2021, 4, 617.	2.0	7

#	Article	IF	CITATIONS
127	Novel Approaches to Treating Relapsed and Refractory Multiple Myeloma with a Focus on Recent Approvals of Belantamab Mafodotin and Selinexor. Clinical Pharmacology: Advances and Applications, 2021, Volume 13, 169-180.	0.8	7
128	Preclinical Evaluation of CD8+ Anti-Bcma mRNA CAR T-Cells for the Control of Human Multiple Myeloma. Blood, 2019, 134, 1811-1811.	0.6	7
129	Human Monoclonal Antibody Targeting IL-17A (AIN457) Down-Regulates MM Cell-Growth and Survival and Inhibits Osteoclast Development In Vitro and In Vivo: A Potential Novel Therapeutic Application In Myeloma. Blood, 2010, 116, 456-456.	0.6	7
130	Immunomodulatory Effects of Histone Deacetylase 6 Inhibition in Suppressor Immune Cells in Multiple Myeloma. Blood, 2011, 118, 128-128.	0.6	7
131	IgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. European Journal of Haematology, 2020, 105, 326-334.	1.1	6
132	Daratumumab, a Novel Potent Human Anti-CD38 Monoclonal Antibody, Induces Significant Killing of Human Multiple Myeloma Cells: Therapeutic Implication Blood, 2009, 114, 608-608.	0.6	6
133	Combination therapy targeting Erk1/2 and CDK4/6i in relapsed refractory multiple myeloma. Leukemia, 2022, 36, 1088-1101.	3.3	6
134	SAR650984 (SAR) Directly Promotes Homotypic Adhesion-Related Multiple Myeloma (MM) Cell Death and SAR-Induced Anti-MM Activities Are Enhanced By Pomalidomide, More Potently Than Lenalidomide. Blood, 2014, 124, 2124-2124.	0.6	5
135	Loss-of-Function of Gabarap Impairs Bortezomib-Induced Anti-Tumor Immunity in Multiple Myeloma: Clinical Application. Blood, 2019, 134, 134-134.	0.6	5
136	MEDI2228, a Novel Bcma Antibody-PBD Conjugate, Sensitizes Human Multiple Myeloma Cells to NK Cell-Mediated Cytotoxicity and Upregulates CD38 Expression in MM Cells. Blood, 2019, 134, 3096-3096.	0.6	4
137	Lenalidomide and Bortezomib Inhibit Osteoclast Differentiation and Activation in Multiple Myeloma: Clinical Implications Blood, 2006, 108, 3485-3485.	0.6	4
138	Targeting MEK1/2 Signaling Cascade by AS703026, a Novel Selective MEK1/2 Inhibitor, Induces Pleiotropic Anti-Myeloma Activity in Vitro and In Vivo Blood, 2009, 114, 3848-3848.	0.6	4
139	Microenvironment Is a Key Determinant of Immune Checkpoint Inhibitor Response. Clinical Cancer Research, 2022, 28, 1479-1481.	3.2	4
140	The Role of B Cell-Activating Factor (BAFF) in the Biology of Multiple Myeloma (MM) Blood, 2005, 106, 3380-3380.	0.6	3
141	Bone Marrow Mast Cells Are Significantly Increased in Patients with Waldenstrom's Macroglobulinemia, and Their Number Following Therapeutic Intervention Is Dependent on Extent of Response Blood, 2005, 106, 980-980.	0.6	3
142	Early Changes in Cytokines, Chemokines and Indices of Bone Metabolism in a Phase 2 Study of the Bruton Tyrosine Kinase (Btk) Inhibitor, Ibrutinib (PCI-32765) in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma (MM). Blood, 2012, 120, 4039-4039.	0.6	3
143	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Reverse Immunosuppression in Multiple Myeloma. Blood, 2016, 128, 2106-2106.	0.6	3
144	JNK Activation and Fas Up-Regulation Precede Proteasomal Degradation of Topoisomerase I in SN38-Mediated Cytotoxicity Against Multiple Myeloma Blood, 2004, 104, 3413-3413.	0.6	3

#	Article	IF	CITATIONS
145	Whole Genome Paired End Sequencing Identifies Genomic Evolution in Myeloma Blood, 2009, 114, 2846-2846.	0.6	3
146	Emerging Therapies for Multiple Myeloma. American Journal of Cancer, 2006, 5, 141-153.	0.4	2
147	The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells in vitro and in vivo. Nature Precedings, 2008, , .	0.1	2
148	APRIL Is Significantly Elevated at All Stages of Multiple Myeloma (MM) and Interferes with Anti-Bcma Monoclonal Antibody-Mediated Cytolysis, Supporting the Clinical Evaluation of Bion-1301 As a Novel Therapeutic Approach in MM. Blood, 2018, 132, 3209-3209.	0.6	2
149	The MEK1/2 Inhibitor AZD6244 (ARRY-142886) Downregulates Constitutive and Adhesion-Induced c-MAF Oncogene Expression and Its Downstream Targets in Human Multiple Myeloma Blood, 2006, 108, 3463-3463.	0.6	2
150	Anti-Myeloma Activity of the Small-Molecule Aurora Kinase Inhibitor VE465 Blood, 2006, 108, 3468-3468.	0.6	2
151	XmAb®5592 Fc-Engineered Humanized Anti-HM1.24 Monoclonal Antibody Has Potent in Vitro and In Vivo Efficacy against Multiple Myeloma Blood, 2009, 114, 609-609.	0.6	2
152	Blockade of XBP1 Splicing by Inhibition of IRE1α Is a Promising Therapeutic Option in Multiple Myeloma. Blood, 2011, 118, 133-133.	0.6	2
153	Stroma-Derived Exosomes Mediate Oncogenesis in Multiple Myeloma. Blood, 2011, 118, 625-625.	0.6	2
154	Enhanced Cytotoxicity of Monoclonal Antibody SGN-40 and Immunomodulatory Drug IMiD3 Against Human Multiple Myeloma Blood, 2004, 104, 1498-1498.	0.6	2
155	Targeting Immune Suppressive Microenvironment By Immune Checkpoint Blockade in Multiple Myeloma. Blood, 2014, 124, 27-27.	0.6	2
156	Gabarap Loss Mediates Immune Escape in High Risk Multiple Myeloma. Blood, 2021, 138, 891-891.	0.6	2
157	Antibody-Based Therapies in Multiple Myeloma. , 2013, , 43-71.		1
158	Mitochondria and Caspase-Independent Cell-Death Triggered by GCS-100, a Novel Carbohydrate-Based Therapeutic in Multiple Myeloma (MM) Cells Blood, 2004, 104, 2456-2456.	0.6	1
159	Requirement of Caspase-8 Versus Caspase-9 during Apoptosis in Multiple Myeloma Cells Induced by Bortezomib- or a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3378-3378.	0.6	1
160	CD27-Mediated Apoptosis Is Dependent on Siva-Induced Caspase Activation in Human Multiple Myeloma Blood, 2005, 106, 3398-3398.	0.6	1
161	Inhibition of ERK1/2 Activity by the MEK1/2 Inhibitor AZD6244 (ARRY-142886) Induces Human Multiple Myeloma Cell Apoptosis in the Bone Marrow Microenvironment: A New Therapeutic Strategy for MM Blood, 2006, 108, 3460-3460.	0.6	1
162	Potential Therapeutic Role of the Selective Adhesion Molecule (SAM) Inhibitor Natalizumab in Multiple Myeloma Blood, 2009, 114, 1850-1850.	0.6	1

#	Article	IF	CITATIONS
163	Bone Marrow Microenvironment Affects The Pathogenesis Of Multiple Myeloma Through Downregulation Of Alternative Splicing Factor Fox2 In Myeloma Cells. Blood, 2013, 122, 3085-3085.	0.6	1
164	Deep Sequencing of Immunoglobulin Loci Reveals Evolution of IgH Clone in Multiple Myeloma Patients over the Course of Treatment. Blood, 2014, 124, 2005-2005.	0.6	1
165	Increased TCF-4 Expression Correlates with Reduced Caspase-3 Induction and Confers Resistance to Bortezomib Blood, 2004, 104, 285-285.	0.6	1
166	Novel Hydroxamic Acid-Derived HDAC Inhibitor LBH589 Potently Activates Intrinsic and Extrinsic Apoptotic Pathways, and Induces Tubulin Hyperacetylation in Multiple Myeloma Blood, 2005, 106, 1578-1578.	0.6	1
167	The BAFF Inhibitor AMG523 Blocks Adhesion and Survival of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment: Clinical Implication Blood, 2006, 108, 3452-3452.	0.6	1
168	Identification of CS1 Peptides for Induction of Antigen-Specific CTLs in Multiple Myeloma Blood, 2007, 110, 1611-1611.	0.6	1
169	Low Levels of Circulating CS1, a Newly Identified Multiple Myeloma (MM) Antigen for a Novel Humanized HuLuc63 Monoclonal Antibody, Is Detected in MM Patient Sera and Correlates with Active Disease Blood, 2007, 110, 1509-1509.	0.6	1
170	The Prognostic Impact of Dynamic Changes of Genetic Risk Stratification in Multiple Myeloma. Blood, 2020, 136, 1-3.	0.6	1
171	Monoclonal Antibody–Based Therapies in Human Multiple Myeloma. Clinical Lymphoma and Myeloma, 2009, 9, S22-S23.	1.4	0
172	Principles of pathway directed therapy. , 0, , 110-120.		0
173	Abstract 2240: Genomic profiling of smoldering multiple myeloma classifies distinct molecular groups. , 2021, , .		0
174	SDX-101 Is Cytotoxic and Overcomes Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3466-3466.	0.6	0
175	Inhibition of Human Plasmacytoma Cell Growth by a Novel JAK Kinase Inhibitor Blood, 2004, 104, 644-644.	0.6	0
176	Alkylphosphocholine Perifosine Inhibits Myeloma Cell Growth While Inducing Myeloid Hyperplasia in a Murine Myeloma Model Blood, 2005, 106, 1579-1579.	0.6	0
177	Chromosomal Deletions and Amplifications in Multiple Myeloma Detected by 500K Single Nucleotide Polymorphism Array Analysis Blood, 2005, 106, 1551-1551.	0.6	0
178	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40-Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications Blood, 2005, 106, 5150-5150.	0.6	0
179	Role of BAFF in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment Blood, 2005, 106, 627-627.	0.6	0
180	In Vitro Generation of Highly-Purified Functional Invariant NKT Cells: A Strategy for Immunotherapy in Multiple Myeloma Blood, 2005, 106, 5183-5183.	0.6	0

#	Article	IF	CITATIONS
181	Up-Regulation of c-Jun contributes to the Induction of Apoptosis by Adaphostin in Human Multiple Myeloma Cells Blood, 2005, 106, 1585-1585.	0.6	0
182	Novel Murine Model To Study Modulation of Genes and Molecular Pathways Induced Following In Vivo Interaction between Multiple Myeloma Cells and Human BM Milieu Blood, 2006, 108, 3409-3409.	0.6	0
183	The Small-Molecule VEGF-Receptor Inhibitor Pazopanib (GW786034B) Targets Both Tumor and Endothelial Cells in Multiple Myeloma Blood, 2006, 108, 5003-5003.	0.6	0
184	Clinical, Radiographic, and Biomarker Characterization of Multiple Myeloma Patients with Bisphosphonate Associated Osteonecrosis of the Jaw Blood, 2006, 108, 3591-3591.	0.6	0
185	In Vitro Generation of Highly Purified Functional Invariant NKT Cells in Multiple Myeloma: A Strategy for Immunotherapy Blood, 2006, 108, 5104-5104.	0.6	0
186	Upregulation of c-Jun Induces Cell Death Via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma Blood, 2006, 108, 3415-3415.	0.6	0
187	Phenotypic and Functional Effects of Perifosine on Dendritic Cells Blood, 2007, 110, 4803-4803.	0.6	0
188	Antibody and Other Immune-Based Therapies for Myeloma. , 2008, , 167-202.		0
189	Phenotypic and Functional Effects of Novel Akt Inhibitor Perifosine on Immune System Blood, 2008, 112, 1555-1555.	0.6	0
190	TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application. Blood, 2008, 112, 2737-2737.	0.6	0
191	Phenotypic and Functional Effects of Novel HDAC Inhibitor LBH589 On Human Lymphocyte Populations Blood, 2009, 114, 3681-3681.	0.6	0
192	Immunomodulatory EFFECTS of Lenalidomide and Pomalidomide ON INTERACTION of TUMOR and BONE MARROW Accessory CELLS IN MULTIPLE MYELOMA Blood, 2009, 114, 950-950.	0.6	0
193	A NOVEL Aurora A Kinase INHIBITOR MLN8237 Induces Cytotoxicity and CELL Cycle Arrest IN MULTIPLE MYELOMA Blood, 2009, 114, 3830-3830.	0.6	0
194	HDAC Inhibition by LBH589 Affects Phenotype and Function of Human Dendritic Cells Blood, 2009, 114, 1646-1646.	0.6	0
195	Lenalidomide Enhances Multiple Myeloma Cytotoxicity Induced by a Novel Fc Domain-Engineered Anti-HM1.24 Monoclonal Antibody with Augmented NK Cell Degranulation. Blood, 2010, 116, 4064-4064.	0.6	0
196	Targeting Aminopeptidases by Tosedostat (TST) (CHR2797), Alone and with LBH589, Induces Significant Cytotoxicity Against Human Multiple Myeloma (MM) Cells. Blood, 2012, 120, 1847-1847.	0.6	0
197	Constitutive B-Cell Maturation Antigen (BCMA) Activation In Human Multiple Myeloma Cells Promotes Myeloma Cell Growth and Survival In The Bone Marrow Microenvironment Via Upregulated MCL-1 and NFIºB Signaling. Blood, 2013, 122, 681- <u>681.</u>	0.6	0
198	A Novel Anti-a Proliferation-Inducing Ligand Hapril.01A Monoclonal Antibody Targets Multiple Myeloma Cells in the Bone Marrow Microenvironment. Blood, 2014, 124, 2098-2098.	0.6	0

#	Article	IF	CITATIONS
199	Bone Marrow Microenvironment Regulates Alternative Splicing Events in Myeloma Cells through Downregulation of RNA Binding Protein Fox2. Blood, 2014, 124, 4714-4714.	0.6	0
200	NFκB Signaling and Mcl-1 Are Critical in B Cell Maturation Antigen-Promoted Multiple Myeloma Cell Growth and Survival. Blood, 2014, 124, 3384-3384.	0.6	0
201	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	0.6	0
202	Activation of Lysosomal Function and Reactive Oxygen Species Play Crucial Roles in SAR650984-Induced Direct Killing of Human Multiple Myeloma Cells with Mutated p53, Which Is Further Augmented By Pomalidomide. Blood, 2015, 126, 4253-4253.	0.6	0
203	The KDM3A-KLF2-IRF4 Axis Maintains Myeloma Cell Survival. Blood, 2015, 126, 3633-3633.	0.6	0
204	Dysregulated Nucleotide Excision Repair (NER) Is a New Target in Multiple Myeloma. Blood, 2015, 126, 4187-4187.	0.6	0
205	The Complex Landscape of Rearrangements in Smoldering and Symptomatic Multiple Myeloma Revealed By Whole-Genome Sequencing. Blood, 2016, 128, 236-236.	0.6	0
206	Genomic Profiling of Smoldering Multiple Myeloma Classifies Molecular Groups with Distinct Pathogenic Phenotypes and Clinical Outcomes. Blood, 2021, 138, 723-723.	0.6	0
207	Identifying Long Noncoding RNA Dependencies Using CRISPR Interference (CRISPRi)-Based Platform in Multiple Myeloma. Blood, 2021, 138, 894-894.	0.6	0
208	Pre-Clinical Validation of a Novel Erk1/2 and CDK4/6 Inhibitor Combination in Multiple Myeloma (MM). Blood, 2020, 136, 22-23.	0.6	0
209	A Novel CD138-Targeting Monoclonal Antibody Induces Potent Myeloma Killing and Further Synergizes with IMiDs or Bortezomib in in Vitro and In Vivo Preclinical Models of Human Multiple Myeloma. Blood, 2020, 136, 30-31.	0.6	0
210	TRAF2 Mediates Sensitivity to Immunomodulatory Drugs in the Bone Marrow Microenvironment. Blood, 2020, 136, 31-31.	0.6	0