
Rebecca G Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bile Duct-on-a-Chip. Methods in Molecular Biology, 2022, 2373, 57-68.	0.4	3
2	How collagen becomes â€~stiff'. ELife, 2022, 11, .	2.8	8
3	Periductal bile acid exposure causes cholangiocyte injury and fibrosis. PLoS ONE, 2022, 17, e0265418.	1.1	4
4	Cysteine-rich domain of type III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biology, 2022, 109, 19-33.	1.5	10
5	Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116718119.	3.3	20
6	REPLY:. Hepatology, 2021, 73, 872-873.	3.6	0
7	Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 145-154.	1.4	14
8	Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 2021, 4, 436.	2.0	33
9	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	7.7	159
10	Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. Journal of Clinical Investigation, 2021, 131, .	3.9	144
11	The heterogeneity of the biliary tree. Journal of Hepatology, 2021, 75, 1236-1238.	1.8	10
12	Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers, 2021, 13, 4275.	1.7	2
13	Scaling concepts in â€~omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
14	Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 2020, 72, 135-145.	1.8	21
15	A Bile Ductâ€onâ€a hip With Organ‣evel Functions. Hepatology, 2020, 71, 1350-1363.	3.6	50
16	Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 2020, 10, 19065.	1.6	42
17	Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Scientific Reports, 2020, 10, 7599.	1.6	18
18	Lipid droplets disrupt mechanosensing in human hepatocytes. American Journal of Physiology - Renal Physiology, 2020, 319, G11-G22.	1.6	23

#	Article	IF	CITATIONS
19	Engineered Biomaterial Platforms to Study Fibrosis. Advanced Healthcare Materials, 2020, 9, e1901682.	3.9	53
20	Liver Mechanics and the Profibrotic Response atÂthe Cellular Level. , 2020, , 661-670.		0
21	Recent advances in understanding biliary atresia. F1000Research, 2019, 8, 218.	0.8	23
22	Engineered Fibrous Networks To Investigate the Influence of Fiber Mechanics on Myofibroblast Differentiation. ACS Biomaterials Science and Engineering, 2019, 5, 3899-3908.	2.6	42
23	Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Seminars in Liver Disease, 2019, 39, 261-274.	1.8	21
24	Biliary Atresia: Clinical and Research Challenges for the Twentyâ€First Century. Hepatology, 2018, 68, 1163-1173.	3.6	205
25	Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical Journal, 2018, 114, 450-461.	0.2	108
26	Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 2018, 9, 449.	5.8	301
27	The ED-A domain enhances the capacity of fibronectin to store latent TGF-β binding protein-1 in the fibroblast matrix. Journal of Cell Science, 2018, 131, .	1.2	107
28	Synthesis and Structure–Activity Relationship Study of Biliatresone, a Plant Isoflavonoid That Causes Biliary Atresia. ACS Medicinal Chemistry Letters, 2018, 9, 61-64.	1.3	11
29	Structure and Distribution of an Unrecognized Interstitium in Human Tissues. Scientific Reports, 2018, 8, 4947.	1.6	243
30	A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1. PLoS Genetics, 2018, 14, e1007532.	1.5	51
31	Hepatic fibrosis in children and adults. Clinical Liver Disease, 2017, 9, 99-101.	1.0	10
32	Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy. PLoS ONE, 2016, 11, e0163737.	1.1	11
33	Eosinophilic Esophagitisâ€Associated Chemical and Mechanical Microenvironment Shapes Esophageal Fibroblast Behavior. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 200-209.	0.9	29
34	The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology, 2016, 64, 880-893.	3.6	84
35	Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology, 2016, 64, 894-907.	3.6	47
36	Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports, 2016, 6, 21387.	1.6	176

#	Article	IF	CITATIONS
37	Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression. Integrative Biology (United Kingdom), 2016, 8, 720-728.	0.6	72
38	The Scientific Conversation, Well Written. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 385-386.	2.3	0
39	One What? Why GI Researchers Should Know andÂCare About the One HealthÂInitiative. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 701-703.	2.3	1
40	Location, location, location: Cellâ€level mechanics in liver fibrosis. Hepatology, 2016, 64, 32-33.	3.6	8
41	Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids. Chemical Research in Toxicology, 2016, 29, 142-149.	1.7	15
42	Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics. PLoS ONE, 2016, 11, e0146588.	1.1	97
43	Beyond the Impact Factor: WhyÂCMGH?. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 571.	2.3	0
44	Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental Cell Research, 2015, 330, 102-110.	1.2	37
45	Role Played by Prx1â€Dependent Extracellular Matrix Properties in Vascular Smooth Muscle Development in Embryonic Lungs. Pulmonary Circulation, 2015, 5, 382-397.	0.8	16
46	Origin and Function of Myofibroblasts in the Liver. Seminars in Liver Disease, 2015, 35, 097-106.	1.8	72
47	Type III Collagen Directs Stromal Organization and Limits Metastasis in a Murine Model of Breast Cancer. American Journal of Pathology, 2015, 185, 1471-1486.	1.9	74
48	Identification of a plant isoflavonoid that causes biliary atresia. Science Translational Medicine, 2015, 7, 286ra67.	5.8	130
49	Biliatresone, a Reactive Natural Toxin from <i>Dysphania glomulifera</i> and <i>D. littoralis</i> : Discovery of the Toxic Moiety 1,2-Diaryl-2-Propenone. Chemical Research in Toxicology, 2015, 28, 1519-1521.	1.7	22
50	Portal Fibroblasts in Biliary Fibrosis. Current Pathobiology Reports, 2014, 2, 185-190.	1.6	19
51	Compression stiffening of brain and its effect on mechanosensing by glioma cells. New Journal of Physics, 2014, 16, 075002.	1.2	148
52	Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers. Biophysical Journal, 2014, 107, 2592-2603.	0.2	254
53	Simple insoluble cues specify stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18104-18105.	3.3	10
54	Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 198-208.	1.5	84

#	Article	IF	CITATIONS
55	Mechanically and Chemically Tunable Cell Culture System for Studying the Myofibroblast Phenotype. Langmuir, 2014, 30, 5481-5487.	1.6	29
56	Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 214-222.	2.5	199
57	The Portal Fibroblast: Not Just a Poor Man's Stellate Cell. Gastroenterology, 2014, 147, 41-47.	0.6	84
58	Matrix Biology of Idiopathic Pulmonary Fibrosis. American Journal of Pathology, 2014, 184, 1643-1651.	1.9	91
59	Isolation of Neonatal Extrahepatic Cholangiocytes. Journal of Visualized Experiments, 2014, , .	0.2	10
60	Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes and Development, 2013, 27, 719-724.	2.7	406
61	From tissue mechanics to transcription factors. Differentiation, 2013, 86, 112-120.	1.0	131
62	Tissue mechanics and fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 884-890.	1.8	290
63	Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. American Journal of Physiology - Renal Physiology, 2013, 304, G605-G614.	1.6	150
64	Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology, 2013, 58, 2056-2069.	3.6	130
65	Extrahepatic Cholangiocyte Cilia Are Abnormal in Biliary Atresia. Journal of Pediatric Gastroenterology and Nutrition, 2013, 57, 96-101.	0.9	29
66	Cholangiocyte cilia are abnormal in syndromic and non-syndromic biliary atresia. Modern Pathology, 2012, 25, 751-757.	2.9	66
67	Isolation of Rat Portal Fibroblasts by In situ Liver Perfusion. Journal of Visualized Experiments, 2012, , .	0.2	18
68	Fibronectin Extra Domain-A Promotes Hepatic Stellate Cell Motility but Not Differentiation Into Myofibroblasts. Gastroenterology, 2012, 142, 928-937.e3.	0.6	39
69	The Precarious State of the Liver After a Fontan Operation: Summary of a Multidisciplinary Symposium. Pediatric Cardiology, 2012, 33, 1001-1012.	0.6	262
70	The role of stem cells in liver repair and fibrosis. International Journal of Biochemistry and Cell Biology, 2011, 43, 222-229.	1.2	67
71	The type III TGF-β receptor betaglycan transmembrane–cytoplasmic domain fragment is stable after ectodomain cleavage and is a substrate of the intramembrane protease γ-secretase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 332-339.	1.9	19
72	Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology, 2011, 53, 1192-1205.	3.6	522

#	Article	IF	CITATIONS
73	Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology, 2011, 53, 1685-1695.	3.6	180
74	Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. American Journal of Physiology - Renal Physiology, 2011, 301, G110-G118.	1.6	276
75	Peripheral immunization induces functional intrahepatic Hepatitis C specific immunity following selective retention of vaccine-specific CD8 T cells by the liver. Hum Vaccin, 2011, 7, 1326-1335.	2.4	10
76	Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes and Development, 2011, 25, 1185-1192.	2.7	138
77	Hepatic Fibrosis and Cirrhosis. Molecular Pathology Library, 2011, , 449-466.	0.1	0
78	Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology, 2010, 51, 1438-1444.	3.6	231
79	The epithelial to mesenchymal transition in liver fibrosis: Here today, gone tomorrow?. Hepatology, 2010, 51, NA-NA.	3.6	67
80	Reninâ€angiotensin System Activation in Congenital Hepatic Fibrosis in the PCK Rat Model of Autosomal Recessive Polycystic Kidney Disease. Journal of Pediatric Gastroenterology and Nutrition, 2010, 50, 639-644.	0.9	22
81	Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology, 2009, 49, 920-929.	3.6	116
82	The role of matrix stiffness in regulating cell behavior. Hepatology, 2008, 47, 1394-1400.	3.6	879
83	Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Human Pathology, 2008, 39, 102-115.	1.1	120
84	Cellular Sources of Extracellular Matrix in Hepatic Fibrosis. Clinics in Liver Disease, 2008, 12, 759-768.	1.0	157
85	Matrix Elasticity, Cytoskeletal Tension, and TGF-β: The Insoluble and Soluble Meet. Science Signaling, 2008, 1, pe13.	1.6	159
86	Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. American Journal of Physiology - Renal Physiology, 2007, 293, G1147-G1154.	1.6	472
87	Transforming growth factor-β and substrate stiffness regulate portal fibroblast activation in culture. Hepatology, 2007, 46, 1246-1256.	3.6	295
88	Mechanisms of liver fibrosis: New insights into an old problem. Drug Discovery Today Disease Mechanisms, 2006, 3, 489-495.	0.8	13
89	Repetitive exposure to TGF-β suppresses TGF-β type I receptor expression by differentiated osteoblasts. Gene, 2006, 379, 175-184.	1.0	15
90	The Role of Matrix Stiffness in Hepatic Stellate Cell Activation and Liver Fibrosis. Journal of Clinical Gastroenterology, 2005, 39, S158-S161.	1.1	205

#	Article	IF	CITATIONS
91	Smad2 and Smad3 Play Different Roles in Rat Hepatic Stellate Cell Function and α-Smooth Muscle Actin Organization. Molecular Biology of the Cell, 2005, 16, 4214-4224.	0.9	145
92	Autocrine release of TGF-Î ² by portal fibroblasts regulates cell growth. FEBS Letters, 2004, 559, 107-110.	1.3	98
93	Smads 2 and 3 Are Differentially Activated by Transforming Growth Factor-β (TGF-β) in Quiescent and Activated Hepatic Stellate Cells. Journal of Biological Chemistry, 2003, 278, 11721-11728.	1.6	173
94	Betaglycan Inhibits TGF-β Signaling by Preventing Type I-Type II Receptor Complex Formation. Journal of Biological Chemistry, 2002, 277, 823-829.	1.6	124
95	Novel inactivating mutations of transforming growth factor-? type I receptor gene in head-and-neck cancer metastases. International Journal of Cancer, 2001, 93, 653-661.	2.3	78
96	V. TGF-β signaling pathways. American Journal of Physiology - Renal Physiology, 2000, 279, G845-G850.	1.6	140
97	Transforming Growth Factor-Î ² Induces Formation of a Dithiothreitol-resistant Type I/Type II Receptor Complex in Live Cells. Journal of Biological Chemistry, 1999, 274, 5716-5722.	1.6	54
98	Oligomeric Structure of Type I and Type II Transforming Growth Factor β Receptors: Homodimers Form in the ER and Persist at the Plasma Membrane. Journal of Cell Biology, 1998, 140, 767-777.	2.3	134
99	Biosynthesis of the Type I and Type II TGF-Î ² Receptors. Journal of Biological Chemistry, 1997, 272, 11444-11451.	1.6	76
100	The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)-Î ² Receptor. Journal of Biological Chemistry, 1995, 270, 2747-2754.	1.6	108
101	Molecular Characteristics of Na+-coupled Clucose Transporters in Adult and Embryonic Rat Kidney. Journal of Biological Chemistry, 1995, 270, 29365-29371.	1.6	176
102	Localization of the Na+/Glucose Cotransporter Gene SGLT2 to Human Chromosome 16 Close to the Centromere. Genomics, 1993, 17, 787-789.	1.3	65
103	Saccharomyces cerevisiae Empyema in a Patient with Esophago-Pleural Fistula Complicating Variceal Sclerotherapy. Chest, 1991, 99, 1518-1519.	0.4	31
104	Analysis of the γδ res site. Journal of Molecular Biology, 1984, 179, 667-687.	2.0	58