Rasoul Esmaeely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 2019, 136, 47738.	2.6	463
2	Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. International Journal of Fatigue, 2021, 143, 106007.	5.7	176
3	The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing, 2021, 93, 106925.	4.8	162
4	Recent advances in core/shell bicomponent fibers and nanofibers: A review. Journal of Applied Polymer Science, 2018, 135, 46265.	2.6	131
5	The need for fully bio-based facemasks to counter coronavirus outbreaks: A perspective. Science of the Total Environment, 2020, 736, 139611.	8.0	131
6	Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 2021, 11, 13385.	3.3	124
7	A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Composites Part B: Engineering, 2021, 216, 108852.	12.0	97
8	Polymer Recycling in Additive Manufacturing: an Opportunity for the Circular Economy. Materials Circular Economy, 2020, 2, 1.	3.2	95
9	Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Advances, 2016, 6, 70056-70063.	3.6	88
10	The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 2021, 13, 1854.	4.5	88
11	Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Progress in Organic Coatings, 2018, 114, 40-46.	3.9	87
12	Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science and Engineering C, 2017, 80, 75-87.	7.3	84
13	A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle and Particle Systems Characterization, 2022, 39, .	2.3	81
14	Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C: Open Access, 2021, 5, 100138.	3.2	79
15	Towards the development of self-healing carbon/epoxy composites with improved potential provided by efficient encapsulation of healing agents in core-shell nanofibers. Polymer Testing, 2017, 62, 79-87.	4.8	73
16	Selfâ€healing and interfacially toughened carbon fibreâ€epoxy composites based on electrospun core–shell nanofibres. Journal of Applied Polymer Science, 2017, 134, 44956.	2.6	72
17	Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements. Journal of Composite Materials, 2016, 50, 435-446.	2.4	71
18	Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Progress in Organic Coatings, 2019, 129, 77-95.	3.9	70

#	Article	IF	CITATIONS
19	The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-Design and Manufacturing, 2020, 3, 281-306.	7.7	69
20	Microencapsulation of a coconut oil-based alkyd resin into poly(melamine–urea–formaldehyde) as shell for self-healing purposes. Progress in Organic Coatings, 2017, 111, 99-106.	3.9	65
21	Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 2022, 158, 112054.	16.4	65
22	Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, 2017, 78, 47-58.	7.3	64
23	Facile strategy toward fabrication of highly responsive self-healing carbon/epoxy composites via incorporation of healing agents encapsulated in poly(methylmethacrylate) nanofiber shell. Journal of Industrial and Engineering Chemistry, 2018, 59, 456-466.	5.8	62
24	Future of additive manufacturing in healthcare. Current Opinion in Biomedical Engineering, 2021, 17, 100255.	3.4	60
25	Improving Mechanical Properties of Carbon/Epoxy Composite by Incorporating Functionalized Electrospun Polyacrylonitrile Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1600551.	3.6	59
26	Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Progress in Organic Coatings, 2018, 120, 160-166.	3.9	55
27	A Review on the Flammability Properties of Carbon-Based Polymeric Composites: State-of-the-Art and Future Trends. Polymers, 2020, 12, 1518.	4.5	53
28	A Review of Recent Advances in Nanoengineered Polymer Composites. Polymers, 2019, 11, 644.	4.5	48
29	Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theoretical and Applied Fracture Mechanics, 2018, 95, 242-247.	4.7	46
30	The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules, 2020, 25, 5157.	3.8	46
31	Multilayered Bio-Based Electrospun Membranes: A Potential Porous Media for Filtration Applications. Frontiers in Materials, 2020, 7, .	2.4	46
32	Biodegradable Elastomers and Gels for Elastic Electronics. Advanced Science, 2022, 9, e2105146.	11.2	45
33	Fracture assessment of polyacrylonitrile nanofiber-reinforced epoxy adhesive. Theoretical and Applied Fracture Mechanics, 2018, 97, 448-453.	4.7	43
34	Development of a Highly Proliferated Bilayer Coating on 316L Stainless Steel Implants. Polymers, 2020, 12, 1022.	4.5	41
35	Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration. Applied Biochemistry and Biotechnology, 2019, 187, 1193-1203.	2.9	40
36	Toward the development of polyethylene photocatalytic degradation. Journal of Polymer Engineering, 2020, 40, 181-191.	1.4	39

#	Article	IF	CITATIONS
37	Insight Into the Current Directions in Functionalized Nanocomposite Hydrogels. Frontiers in Materials, 2020, 7, .	2.4	38
38	Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers, 2021, 13, 4199.	4.5	38
39	A ternary nanofibrous scaffold potential for central nerve system tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 2394-2401.	4.0	35
40	A review of sustainable and environment-friendly flame retardants used in plastics. Polymer Testing, 2022, 108, 107511.	4.8	32
41	Synthesis and characterization of TiO2/acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid nanogel composite and investigation its self-healing performance in the epoxy coatings. Colloid and Polymer Science, 2020, 298, 213-223.	2.1	31
42	Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite. Theoretical and Applied Mechanics Letters, 2018, 8, 126-131.	2.8	30
43	Electrospun nanofiber interleaving in fiber reinforced composites—Recent trends. Material Design and Processing Communications, 2019, 1, e24.	0.9	28
44	A Review of Dental Composites: Methods of Characterizations. ACS Biomaterials Science and Engineering, 2020, 6, 3713-3744.	5.2	28
45	Polyurethane-Nanolignin Composite Foam Coated with Propolis as a Platform for Wound Dressing: Synthesis and Characterization. Polymers, 2021, 13, 3191.	4.5	28
46	Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Science China Chemistry, 2022, 65, 363-372.	8.2	28
47	Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 437-452.	4.0	27
48	Lowâ€pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. Journal of Applied Polymer Science, 2019, 136, 47567.	2.6	26
49	Effect of nanofiller incorporation on thermomechanical and toughness of poly (vinyl alcohol)-based electrospun nanofibrous bionanocomposites. Theoretical and Applied Fracture Mechanics, 2019, 99, 44-50.	4.7	26
50	Nanofibrous scaffolds with biomimetic structure. Journal of Biomedical Materials Research - Part A, 2018, 106, 370-376.	4.0	25
51	Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Current Opinion in Biomedical Engineering, 2022, 22, 100393.	3.4	25
52	Development of an epoxy self-healing coating through the incorporation of acrylic acid-co-acrylamide copolymeric gel. Progress in Organic Coatings, 2020, 149, 105948.	3.9	24
53	A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance. Materials Research Express, 2019, 6, 086470.	1.6	21
54	The influence of size and healing content on the performance of extrinsic selfâ€healing coatings. Journal of Applied Polymer Science, 2021, 138, 49964.	2.6	21

#	Article	IF	CITATIONS
55	Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks. Polymer Science - Series A, 2016, 58, 399-408.	1.0	20
56	Facile strategy toward the development of a self-healing coating by electrospray method. Materials Research Express, 2019, 6, 116444.	1.6	19
57	A highly responsive healing agent for the autonomous repair of anti-corrosion coatings on wet surfaces. In operando assessment of the self-healing process. Journal of Materials Science, 2021, 56, 1794-1813.	3.7	19
58	Preparation and Characterization of Electrosprayed Nanocapsules Containing Coconut-Oil-Based Alkyd Resin for the Fabrication of Self-Healing Epoxy Coatings. Applied Sciences (Switzerland), 2020, 10, 3171.	2.5	17
59	Alumina reinforced nanofibers used for exceeding improvement in mechanical properties of the laminated carbon/epoxy composite. Theoretical and Applied Fracture Mechanics, 2018, 96, 193-201.	4.7	16
60	Core-shell nanofibers of poly (<i>ε</i> –caprolactone) and Polyvinylpyrrolidone for drug delivery system. Materials Research Express, 2019, 6, 115015.	1.6	16
61	Cooperative Chemical Coupling and Physical Lubrication Effects Construct Highly Dynamic Ionic Covalent Adaptable Network for High-Performance Wearable Electronics. CCS Chemistry, 2023, 5, 1096-1107.	7.8	16
62	Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. Journal of the Textile Institute, 2019, 110, 89-99.	1.9	15
63	Influence of microfluidic flow rates on the propagation of nano/microcracks in liquid core and hollow fibers. Theoretical and Applied Fracture Mechanics, 2018, 96, 83-89.	4.7	14
64	The Effect of Carbon Black on the Properties of Plasticised Wheat Gluten Biopolymer. Molecules, 2020, 25, 2279.	3.8	14
65	Mesoporous silica aerogel reinforced dental composite: Effects of microstructure and surface modification. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104947.	3.1	14
66	A review on combustion and mechanical behaviour of pyrolysis biochar. Materials Today Communications, 2022, 31, 103629.	1.9	14
67	Encapsulation of Cerium Nitrate within Poly(urea-formaldehyde) Microcapsules for the Development of Self-Healing Epoxy-Based Coating. ACS Omega, 2021, 6, 31147-31153.	3.5	12
68	Investigation of thermal and dielectric properties of Fe ₃ O ₄ /high-density polyethylene nanocomposites. Journal of Composite Materials, 2017, 51, 3923-3929.	2.4	11
69	Efficient Improvement in Fracture Toughness of Laminated Composite by Interleaving Functionalized Nanofibers. Polymers, 2021, 13, 2509.	4.5	11
70	Grafted ZnO nanoparticles used for development in photocatalytic degradation performance of polyethylene. Polymer Bulletin, 2019, 76, 3593-3606.	3.3	10
71	A fluorine-rich phenolic polyurethane elastomer with excellent self-healability and reprocessability and its applications for wearable electronics. Science China Materials, 2022, 65, 2553-2564.	6.3	10
72	Wound dressing application of castor oil- and CAPA-based polyurethane membranes. Polymer Bulletin, 2020, 77, 2945-2964.	3.3	9

#	Article	IF	CITATIONS
73	Corrosion Resistance Evaluation of Self-Healing Epoxy Coating Based on Dual-Component Capsules Containing Resin and Curing Agent. International Journal of Polymer Science, 2021, 2021, 1-13.	2.7	9
74	Synthesis of Cloisite 30B-acrylamide/acrylic acid nanogel composite for self-healing purposes. Applied Clay Science, 2021, 210, 106174.	5.2	9
75	Flammability and mechanical properties of biochars made in different pyrolysis reactors. Biomass and Bioenergy, 2021, 152, 106197.	5.7	8
76	The influence of the healing agent characteristics on the healing performance of epoxy coatings: Assessment of the repair process by EIS technique. Progress in Organic Coatings, 2021, 159, 106431.	3.9	8
77	Cytocompatibility and Antibacterial Properties of Coaxial Electrospun Nanofibers Containing Ciprofloxacin and Indomethacin Drugs. Polymers, 2022, 14, 2565.	4.5	8
78	Theoretical crossâ€link density of the nanofibrous scaffolds. Material Design and Processing Communications, 2019, 1, e22.	0.9	7
79	Experimental Investigation of Thrust Force, Delamination and Surface Roughness in Drilling Hybrid Structural Composites. Materials, 2021, 14, 4468.	2.9	7
80	A chemically durable superhydrophobic aluminum surface coated with silicon carbide nanoparticles and perfluoro acrylic copolymer. Theoretical and Applied Fracture Mechanics, 2018, 94, 181-185.	4.7	6
81	Development of an Electrospun Scaffold for Retinal Tissue Engineering. Polymer Science - Series B, 2020, 62, 290-298.	0.8	6
82	Synthesis of TiO2 nanogel composite for highly efficient self-healing epoxy coating. Journal of Advanced Research, 2023, 43, 137-146.	9.5	6
83	Testing bioplastic containing functionalised biochar. Polymer Testing, 2022, 113, 107657.	4.8	6
84	Improving mechanical and thermal properties of high-density polyethylene/wood flour nanocomposites. Journal of Thermal Analysis and Calorimetry, 2019, 137, 175-183.	3.6	5
85	Synthesis and characterization of modified resorcinol formaldehyde aerogel as a novel absorbent to remove oxytetracycline and chlortetracycline antibiotics from wastewater. Polymer Bulletin, 2022, 79, 6309-6341.	3.3	5
86	Preparation of an acrylic acid-based superabsorbent composite: investigation of synthesis parameters. Chemical Papers, 2020, 74, 939-949.	2.2	4
87	Coreâ€shell nanofibers for developing selfâ€healing materials: Recent progress and future directions. Material Design and Processing Communications, 2021, 3, e90.	0.9	3
88	Characterization of self-healing polymeric materials. , 2020, , 123-140.		3
89	Hollow fiber reinforced polymer composites. , 2021, , 461-477.		3
90	Development of smart epoxy coating through click reaction using a vegetable oil. Progress in Organic Coatings, 2022, 170, 106985.	3.9	2

#	Article	IF	CITATIONS
91	Core–shell nanofibers of poly (glycerol sebacate) and poly (1,8 octanediol citrate) for retinal regeneration. Polymer Bulletin, 0, , 1.	3.3	1

92 Enhancing In-plane Mechanical Properties of Carbon/Epoxy Composite Using Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td