Michael Stephen Scurrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave modification of iron supported on beta silicon carbide catalysts for Fischer–Tropsch synthesis. Reaction Chemistry and Engineering, 2022, 7, 1307-1314.	1.9	2
2	Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts. Applied Petrochemical Research, 2021, 11, 235-248.	1.3	2
3	Microwave Radiation Effects on the Acidic Properties of Fe/ZSM-5 Catalysts for Methanol Conversion. Current Microwave Chemistry, 2021, 8, 27-32.	0.2	0
4	TPSR study: effect of microwave radiation on the physicochemical properties of Fe/ZSM-5 in the methanol to hydrocarbons (MTH) process. Journal of Porous Materials, 2020, 27, 165-177.	1.3	4
5	Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading. Renewable Energy, 2020, 156, 84-97.	4.3	16
6	The effect of microwave irradiation on heterogeneous catalysts for Fischer–Tropsch synthesis. Reviews in Chemical Engineering, 2019, .	2.3	2
7	Effect of a titania covering on CNTS as support for the Ru catalysed selective CO methanation. Applied Catalysis B: Environmental, 2018, 232, 492-500.	10.8	34
8	Cold plasmas in the modification of catalysts. Reviews in Chemical Engineering, 2018, 34, 201-213.	2.3	10
9	Hydrogen production from glycerol reforming: conventional and green production. Reviews in Chemical Engineering, 2018, 34, 695-726.	2.3	28
10	Selective CO Methanation Over Ru Supported on Carbon Spheres: The Effect of Carbon Functionalization on the Reverse Water Gas Shift Reaction. Catalysis Letters, 2018, 148, 3502-3513.	1.4	9
11	Enhanced photocatalytic hydrogen formation over Fe-loaded TiO2 and g-C3N4 composites from mixed glycerol and water by solar irradiation. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	14
12	Thoughts on the use of gold-based catalysts in environmental protection catalysis. Gold Bulletin, 2017, 50, 77-84.	1.1	24
13	Carbon Surface Modifications by Plasma for Catalyst Support and Electrode Materials Applications. Topics in Catalysis, 2017, 60, 823-830.	1.3	16
14	Prospects for Lower Carbon Routes for Conversion of Natural Gas to Energy. Energy & Fuels, 2017, 31, 6374-6377.	2.5	8
15	Stability of gold particles in NaY-type zeolites: Promotional effects of co-exchanged metal cations. Microporous and Mesoporous Materials, 2017, 241, 52-57.	2.2	3
16	Photocatalytic H2 production from glycerol–water mixtures over Ni/γ-Al2O3 and TiO2 composite systems. International Journal of Hydrogen Energy, 2017, 42, 15031-15043.	3.8	18
17	Low-Temperature Water–Gas Shift Reaction over Au Supported on Anatase in the Presence of Copper: EXAFS/XANES Analysis of Gold–Copper Ion Mixtures on TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 8812-8823.	1.5	20
18	Controlled Synthesis of CeO ₂ NS-Au-CdSQDs Ternary Nanoheterostructure: A Promising Visible Light Responsive Photocatalyst for H ₂ Evolution. Inorganic Chemistry, 2017, 56, 12297-12307.	1.9	50

#	Article	IF	CITATIONS
19	Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: Water mixtures under solar light irradiation. International Journal of Hydrogen Energy, 2017, 42, 807-820.	3.8	42
20	Microwave Radiation-Induced Increases in Catalytic Performance: The Effect of Bedshape During Irradiation. Current Microwave Chemistry, 2017, 4, .	0.2	4
21	Synthesis of gold-polyaniline nanocomposites by complexation. Polymers for Advanced Technologies, 2016, 27, 1195-1203.	1.6	13
22	Carbon produced by the catalytic decomposition of methane on nickel: Carbon yields and carbon structure as a function of catalyst properties. Journal of Natural Gas Science and Engineering, 2016, 32, 501-511.	2.1	20
23	The effect of protonation and oxidation state of polyaniline on the stability of gold nanoparticles. European Polymer Journal, 2016, 82, 300-306.	2.6	15
24	The Conversion of Methanol into Higher Hydrocarbons Catalyzed by Gold. ChemCatChem, 2016, 8, 3118-3120.	1.8	2
25	Achieving nano-gold stability through rational design. Chemical Science, 2016, 7, 6815-6823.	3.7	15
26	Catalytic activity of gold-perovskite catalysts in the oxidation of carbon monoxide. Gold Bulletin, 2016, 49, 35-44.	1.1	9
27	The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polymers for Advanced Technologies, 2016, 27, 759-764.	1.6	7
28	Effect of Fe on the activity of Au/FeO x -TiO2 catalysts for CO oxidation. Gold Bulletin, 2016, 49, 9-20.	1.1	9
29	Microwave treatment: a facile method for the solid state modification of potassium-promoted iron on silica Fischer–Tropsch catalysts. RSC Advances, 2016, 6, 22222-22231.	1.7	9
30	Methane dehydroaromatization over modified Mn/H-ZSM-5 zeolite catalysts: Effect of tungsten as a secondary metal. Catalysis Communications, 2016, 78, 37-43.	1.6	18
31	Microwave–induced Solid-state Interactions for the Synthesis of Fischer-Tropsch Catalysts. Current Microwave Chemistry, 2016, 03, 1-1.	0.2	4
32	Dehydroaromatization of methane over Sn–Pt modified Mo/H-ZSM-5 zeolite catalysts: Effect of preparation method. Applied Catalysis A: General, 2015, 503, 218-226.	2.2	21
33	Cyanide leaching of gold catalysts. Catalysis Communications, 2015, 67, 87-89.	1.6	17
34	Aromatization of n-hexane over Ga, Mo and Zn modified H-ZSM-5 zeolite catalysts. Catalysis Communications, 2015, 72, 49-52.	1.6	80
35	Dehydroaromatization of methane over doped Pt/Mo/H-ZSM-5 zeolite catalysts: The promotional effect of tin. Applied Catalysis A: General, 2014, 485, 238-244.	2.2	44
36	Conversion of Synthesis Gas to Dimethylether Over Gold-based Catalysts. Topics in Catalysis, 2012, 55, 771-781.	1.3	9

#	Article	IF	CITATIONS
37	Conjugated polymer stabilized palladium nanoparticles as a versatile catalyst for Suzuki cross-coupling reactions for both aryl and heteroaryl bromide systems. Catalysis Science and Technology, 2011, 1, 308.	2.1	67
38	Metal–Polymer Hybrid Material as a Catalyst for the Heck Coupling Reaction Under Phosphine-Free Conditions. Synthetic Communications, 2011, 41, 3561-3572.	1.1	17
39	Light alkane aromatization over modified Zn-ZSM-5 catalysts: characterization of the catalysts by hydrogen/deuterium isotope exchange. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 303-309.	0.8	11
40	In-situ synthesis of a palladium-polyaniline hybrid catalyst for a Suzuki coupling reaction. Journal of Organometallic Chemistry, 2011, 696, 2206-2210.	0.8	61
41	Paramagnetic polyaniline nanospheres. Chemical Physics Letters, 2010, 494, 232-236.	1.2	25
42	Low temperature CO oxidation over gold supported mesoporous Fe–TiO2. Journal of Molecular Catalysis A, 2010, 319, 92-97.	4.8	42
43	In situ synthesis of a Pd–poly (1,8-diaminonaphthalene) nanocomposite: An efficient catalyst for Heck reactions under phosphine-free conditions. Catalysis Communications, 2010, 12, 116-121.	1.6	29
44	Optical, microscopic and low temperature electrical property of one-dimensional gold–polyaniline composite networks. Journal Physics D: Applied Physics, 2009, 42, 095409.	1.3	33
45	CO oxidation over titanate nanotube supported Au: Deactivation due to bicarbonate. Journal of Catalysis, 2009, 261, 94-100.	3.1	63
46	CO Oxidation over Anatase TiO2 Supported Au: Effect of Nitrogen Doping. Catalysis Letters, 2009, 130, 341-349.	1.4	11
47	Role of Preparation Techniques in the Activity of Au/TiO2 Nanostructures Stabilised on SiO2: CO and Preferential CO Oxidation. Topics in Catalysis, 2009, 52, 912-919.	1.3	25
48	Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bulletin, 2009, 42, 321-327.	3.2	38
49	The effects of boron and silver on the oxygen-free conversion of methane over Mo/H-ZSM-5 catalysts. Journal of Molecular Catalysis A, 2009, 305, 40-46.	4.8	21
50	Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route atalysis and Processes Development. Catalysis Reviews - Science and Engineering, 2009, 51, 1-145.	5.7	162
51	Potassium Titanate: An Alternative Support for Gold Catalyzed Carbon Monoxide Oxidation?. Catalysis Letters, 2008, 123, 193-197.	1.4	16
52	Gas phase hydrogenation reaction using a â€~metal nanoparticle–polymer' composite catalyst. Journal of Materials Science, 2008, 43, 6289-6295.	1.7	5
53	In-situ chemical synthesis route for a fiber shaped gold-polyaniline nanocomposite. Gold Bulletin, 2008, 41, 246-250.	3.2	25
54	Catalytic activity of a soft composite material: Nanoparticle location–activity relationship. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 43-49.	1.7	8

#	Article	IF	CITATIONS
55	Effects of preparation methods on gold/titania catalysts for CO oxidation. Journal of Molecular Catalysis A, 2008, 288, 125-130.	4.8	7
56	Formation of metal nanoparticles in a polymer nanofiber: a hybrid material for gas-phase catalytic reactions. Smart Materials and Structures, 2008, 17, 045013.	1.8	5
57	Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material. Nanotechnology, 2008, 19, 075708.	1.3	24
58	Study of Carbon Monoxide Hydrogenation Over Supported Au Catalysts. Studies in Surface Science and Catalysis, 2007, 163, 141-151.	1.5	6
59	Methane conversion to chemicals, carbon and hydrogen (MCCH) over modified molybdenum-NAS catalysts. Studies in Surface Science and Catalysis, 2007, 167, 13-18.	1.5	1
60	Palladium-Polyaniline and Palladium-Polyaniline Derivative Composite Materials. Platinum Metals Review, 2007, 51, 3-15.	1.5	37
61	Characteristics of gold-zeolite Y catalysts in CO oxidation and ethylene hydrogenation. Studies in Surface Science and Catalysis, 2007, 170, 1059-1064.	1.5	4
62	Dramatic promotion of gold/titania for CO oxidation by sulfate ions. Chemical Communications, 2007, , 1044.	2.2	46
63	Directional assembly of polyaniline functionalized gold nanoparticles. Journal of Physics Condensed Matter, 2007, 19, 196225.	0.7	26
64	On-line deactivation of Au/TiO2 for CO oxidation in H2-rich gas streams. Catalysis Today, 2007, 122, 254-259.	2.2	27
65	Hydrophilic behaviour of gold-poly (o-phenylenediamine) hybrid nanocomposite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 140, 166-171.	1.7	25
66	Optical and micro-analytical study of a copper-conjugated polymer composite. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2263-2269.	0.8	9
67	A novel synthesis route for a gold–polymer soft composite material. Physica Status Solidi - Rapid Research Letters, 2007, 1, R1-R3.	1.2	10
68	Low-pressure methanol/ dimethylether synthesis from syngas on gold-based catalysts. Gold Bulletin, 2007, 40, 219-224.	3.2	10
69	Self Assembly of the Metal Nanoparticles: Formation of the Highly Oriented, Core-Shell Type, Bimetallic Gold–Silver Film. Journal of Nanoparticle Research, 2007, 9, 323-330.	0.8	9
70	Effects of incorporation of ions into Au/TiO2 catalysts for carbon monoxide oxidation. Topics in Catalysis, 2007, 44, 167-172.	1.3	33
71	Polymerization of Aniline by Cupric Sulfate: A Facile Synthetic Route for Producing Polyaniline. Journal of Polymer Research, 2007, 13, 397-401.	1.2	36
72	Palladium Nanoparticles in Poly(oâ€phenylenediamine): Synthesis of a Nanostructured â€~Metalâ€Polymer' Composite Material. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1469-1476.	1.2	16

#	Article	IF	CITATIONS
73	In situ synthesis of copper nanoparticles and poly(o-toluidine): A metal–polymer composite material. European Polymer Journal, 2006, 42, 670-675.	2.6	98
74	Self-assembly of silver nanoparticles: Formation of a thin silver film in a polymer matrix. Materials Science and Engineering C, 2006, 26, 87-91.	3.8	30
75	Formation of palladium nanoparticles in poly (o-methoxyaniline) macromolecule fibers: An in-situ chemical synthesis method. European Physical Journal E, 2006, 19, 149-154.	0.7	34
76	Fabrication of a nanostructured gold-polymer composite material. European Physical Journal E, 2006, 20, 347-353.	0.7	33
77	Polyaniline stabilized highly dispersed gold nanoparticle: an in-situ chemical synthesis route. Journal of Materials Science, 2006, 41, 6189-6192.	1.7	48
78	Preparation of highly dispersed Pd-nanoparticles in poly- (o-aminophenol) needles: An â€~intimate composite material'. Journal of Materials Science, 2006, 41, 1733-1737.	1.7	17
79	Gold in polyaniline: Recent trends. Gold Bulletin, 2006, 39, 166-174.	3.2	32
80	Silver nanoparticle catalysed redox reaction: An electron relay effect. Materials Chemistry and Physics, 2006, 97, 283-287.	2.0	242
81	Synthesis of highly oriented gold thin films by a UV-irradiation route. EPJ Applied Physics, 2005, 29, 45-49.	0.3	9
82	The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2: Drifts studies. Applied Catalysis A: General, 2005, 291, 98-115.	2.2	69
83	Reductive routes to stabilized nanogold and relation to catalysis by supported gold. Applied Catalysis A: General, 2005, 292, 76-81.	2.2	55
84	Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Materials Chemistry and Physics, 2005, 90, 221-224.	2.0	126
85	The selective dissolution of alumina, cobalt and platinum from a calcined spent catalyst using different lixiviants. Minerals Engineering, 2005, 18, 801-810.	1.8	28
86	Polymerization of Aniline by Auric Acid: Formation of Gold Decorated Polyaniline Nanoballs. Macromolecular Rapid Communications, 2005, 26, 232-235.	2.0	135
87	Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach. Applied Physics A: Materials Science and Processing, 2005, 80, 395-398.	1.1	21
88	Redox catalytic property of gold nanoclusters: evidence of an electron-relay effect. Applied Physics A: Materials Science and Processing, 2005, 80, 797-801.	1.1	37
89	The influence of gold on the optical properties of sol–gel derived titania. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 70-76.	2.6	38
90	The effect of gold on the phase transitions of titania. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 61-69.	2.6	27

#	Article	IF	CITATIONS
91	Preparation and characterization of a conjugated polymer and copper nanoparticle composite material: A chemical synthesis route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 123, 181-186.	1.7	15
92	Activation of Au/TiO2Catalyst for CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 10319-10326.	1.2	128
93	Fabrication of a Metal Nanoparticles and Polymer Nanofibers Composite Material by an in Situ Chemical Synthetic Route. Langmuir, 2005, 21, 7964-7967.	1.6	116
94	True Nickel-Catalyzed Oligomerization versus Hetero-Oligomerization: Development of Indicators for Determining the Mode of Oligomerization as a Function of Reaction Temperature. Catalysis Letters, 2004, 95, 87-91.	1.4	10
95	Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water–gas shift reaction. Applied Catalysis A: General, 2004, 258, 241-249.	2.2	133
96	Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements. Applied Catalysis A: General, 2004, 259, 163-168.	2.2	49
97	Direct observation of thermally activated NO adsorbate species on Auî—,TiO2: DRIFTS studies. Journal of Molecular Catalysis A, 2004, 219, 131-141.	4.8	23
98	Simplified single-step synthetic route for the preparation of a highly active gold-based catalyst for CO oxidation. Journal of Molecular Catalysis A, 2004, 215, 103-106.	4.8	31
99	Effect of Pretreatment Variables on the Reaction of Nitric Oxide (NO) with Auâ^TiO2:Â DRIFTS Studies. Journal of Physical Chemistry B, 2004, 108, 18254-18260.	1.2	37
100	Designing Oxidation Catalysts: Are We Getting Better?. Cattech, 2003, 7, 90-103.	2.6	27
101	Title is missing!. Catalysis Letters, 2003, 90, 1-6.	1.4	59
102	Extraction of cobalt(II) from an ammonium nitrate-containing leach liquor by an ammonium salt of di(2-ethylhexyl)phosphoric acid. Minerals Engineering, 2003, 16, 1013-1017.	1.8	8
103	Designing Oxidation Catalysts: Are We Getting Better?. ChemInform, 2003, 34, no.	0.1	Ο
104	Use of iron pentacarbonyl as a novel probe for the characterization of gold supported on silica. Journal of Molecular Catalysis A, 2003, 193, 151-155.	4.8	1
105	Nickel silica-alumina catalysts for ethene oligomerization—control of the selectivity to 1-alkene products. Applied Catalysis A: General, 2003, 245, 43-53.	2.2	29
106	Hydroxyapatite as a novel support for gold and ruthenium catalysts Behaviour in the water gas shift reaction. Applied Catalysis A: General, 2003, 245, 137-147.	2.2	137
107	The gold–ruthenium–iron oxide catalytic system for the low temperature water–gas-shift reaction The examination of gold–ruthenium interactions. Applied Catalysis A: General, 2003, 245, 149-158.	2.2	57
108	Activity and selectivity of nickel-exchanged silica-alumina catalysts for the oligomerization of propene and 1-butene into distillate-range products. Applied Catalysis A: General, 2003, 248, 239-248.	2.2	26

#	Article	IF	CITATIONS
109	CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO. Applied Catalysis A: General, 2003, 253, 527-536.	2.2	67
110	Evidence for the enhancement of the catalytic action of Zn-ZSM-5-based catalysts for propane aromatization using microwave radiation. Catalysis Communications, 2002, 3, 253-256.	1.6	10
111	NAS (novel aluminosilicates) as catalysts for the aromatisation of propane. Catalysis Today, 2002, 71, 429-435.	2.2	36
112	DRIFTS studies of the interaction of nitric oxide and carbon monoxide on Au–TiO2. Catalysis Today, 2002, 72, 79-87.	2.2	55
113	Characterization by ammonia adsorption microcalorimetry of substantially amorphous or partially crystalline ZSM-5 materials and correlation with catalytic activity. Applied Catalysis A: General, 2002, 223, 29-33.	2.2	21
114	Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts. Applied Catalysis A: General, 2002, 235, 265-272.	2.2	64
115	Oligomerization of Ethene In a Slurry Reactor Using a Nickel(II)-Exchanged Silica–Alumina Catalyst. Journal of Catalysis, 2001, 197, 49-57.	3.1	59
116	A Basic Approach to Evaluate Methane Partial Oxidation Catalysts. Journal of Catalysis, 1993, 143, 262-274.	3.1	54
117	Effect of the metal oxide loading on the activity of silica supported MoO3 and V2O5 catalysts in the selective partial oxidation of methane. Catalysis Letters, 1993, 18, 283-288.	1.4	30
118	Novel high activity catalyst for partial oxidation of methane to formaldehyde. Journal of the Chemical Society Chemical Communications, 1993, , 751.	2.0	46
119	Cetane number determination of synthetic diesel fuels. Fuel, 1992, 71, 1323-1327.	3.4	34
120	Studies of the Mechanism of the Oxidative Coupling of Methane Using Oxide Catalysts. , 1992, , 200-258.		9
121	Identification of novel catalysts and conditions for the highly efficient and stable heterogeneous oligomerization of ethylene. Journal of the Chemical Society Chemical Communications, 1991, , 126.	2.0	16
122	Conversion of synthesis gas to dimethyl ether over bifunctional catalytic systems. Industrial & Engineering Chemistry Research, 1991, 30, 2372-2378.	1.8	67
123	Metathesis of fatty esters derived from South African sunflower oil. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 362-363.	0.8	14
124	Oxidative coupling of methane using Li/MgO catalyst: Re-appraisal of the optimum loading of Li. Catalysis Letters, 1990, 5, 301-308.	1.4	7
125	Selective oxidation of methane in the presence of nitric oxide: comments on the reaction mechanism. Catalysis Today, 1990, 6, 399-407.	2.2	5
126	Partial oxidation of methane over samarium and lanthanum oxides: a study of the reaction mechanism. Catalysis Today, 1989, 4, 371-381.	2.2	41

#	Article	IF	CITATIONS
127	Partial oxidation of methane over oxide catalysts. Comments on the reaction mechanism. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 2507.	1.0	52
128	Oxidative coupling of methane using oxide catalysts. Chemical Society Reviews, 1989, 18, 251.	18.7	360
129	Selective oxidation of methane in the presence of NO: new evidence on the reaction mechanism. Journal of the Chemical Society Chemical Communications, 1989, , 765.	2.0	7
130	Factors affecting the selectivity of the aromatization of light alkanes on modified ZSM-5 catalysts. Applied Catalysis, 1988, 41, 89-98.	1.1	95
131	Direct partial oxidation of methane: Effect of the oxidant on the reaction. Applied Catalysis, 1988, 38, 157-165.	1.1	34
132	The role of gas phase reaction in the selective oxidation of methane. Journal of the Chemical Society Chemical Communications, 1988, , 253.	2.0	28
133	Conversion of methane-ethylene mixtures over sulphate-treated zirconia catalysts. Applied Catalysis, 1987, 34, 109-117.	1.1	72
134	Comparison of ethene and ethane primary selectivities with Li/MgO and MgO catalysts for oxidative coupling of methane: comments on the role of lithium. Journal of the Chemical Society Chemical Communications, 1987, , 1862.	2.0	19
135	The role of surface O? in the selective oxidation of methane. Journal of the Chemical Society Chemical Communications, 1987, , 1388.	2.0	30
136	PROPENE OLIGOMERIZATION OVER TiO2–ZrO2CATALYSTS. Chemistry Letters, 1984, 13, 1781-1782.	0.7	2
137	Observations on an alternative route for the preparation of Rh-zeolites active in the carbonylation of methanol. Journal of Molecular Catalysis, 1983, 18, 375-380.	1.2	19
138	Effects of loading on structure of Rh zeolite catalysts and their activity for methanol carbonylation. Zeolites, 1983, 3, 261-270.	0.9	7
139	Supported liquid phase hydroformylation catalysts containing rhodium and triphenylphosphine. Effects of additional solvents and kinetics. Journal of Molecular Catalysis, 1981, 12, 179-195.	1.2	34
140	Formation and surface reactions of oxide supported rhodium carbonyl complexes. Journal of Molecular Catalysis, 1980, 10, 57-67.	1.2	13
141	Heterogeneous hydroformylation catalysts produced by direct interaction between rhodium complexes and the support. Journal of Molecular Catalysis, 1980, 10, 127-132.	1.2	23
142	Supported liquid-phase hydroformylation catalysts containing rhodium and triphenylphosphine. Journal of Molecular Catalysis, 1979, 6, 405-420.	1.2	41
143	Carbonylation of methanol and ethanol on a rhodium–zeolite catalyst. Journal of the Chemical Society Faraday Transactions I, 1978, 74, 2313.	1.0	24
144	Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system. Journal of the Chemical Society Faraday Transactions I, 1977, 73, 632.	1.0	80

#	Article	IF	CITATIONS
145	Selectivity of a heterogeneous rhodium catalyst for the carbonylation of monohydric alcohols. Journal of the Chemical Society Faraday Transactions I, 1977, 73, 2036.	1.0	32
146	Exchange reactions of benzene and alkylbenzenes with deuterium on alumina and magnesium oxide. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 818.	1.0	5
147	Reactions of 3,3-dimethylbut-1-ene with deuterium or deuterium oxide on oxide catalysts. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 2512.	1.0	4
148	Exchange of alkanes with deuterium over γ-alumina. A BrÃ,nsted linear free energy relationship. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 903.	1.0	38
149	Polymerization of ethylene on chromium oxide catalysts. Part 4.—Infra-red study of the adsorption of nitric oxide and ammonia on active catalyst. Journal of the Chemical Society Faraday Transactions I, 1973, 69, 660.	1.0	14
150	Evidence for carbanionic intermediates during exchange between butanes and deuterium on alumina. Journal of the Chemical Society Chemical Communications, 1973, , 799a.	2.0	4
151	Gold-Catalysed Reactions. , 0, , .		0