Antoni Llopis-Lorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Horseradish Peroxidase-Functionalized Gold Nanoconjugates for Breast Cancer Treatment Based on Enzyme Prodrug Therapy. International Journal of Nanomedicine, 2022, Volume 17, 409-422.	3.3	5
2	Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms. Nano Letters, 2022, 22, 1836-1844.	4.5	8
3	Engineering chemical communication between micro/nanosystems. Chemical Society Reviews, 2021, 50, 8829-8856.	18.7	27
4	Ultrafast Directional Janus Pt–Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano, 2021, 15, 4467-4480.	7.3	88
5	A chemical circular communication network at the nanoscale. Chemical Science, 2021, 12, 1551-1559.	3.7	20
6	Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding. Chemical Science, 2020, 11, 12829-12834.	3.7	6
7	A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. Chemical Communications, 2020, 56, 9974-9977.	2.2	2
8	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	4.5	56
9	Dithioacetal-mechanized mesoporous nanosensor for Hg(II) determination. Microporous and Mesoporous Materials, 2020, 297, 110054.	2.2	13
10	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie - International Edition, 2019, 58, 14986-14990.	7.2	40
11	An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie, 2019, 131, 15128-15132.	1.6	4
12	Glucose-Responsive Enzyme-Controlled Mesoporous Nanomachine with a Layer-by-Layer Supramolecular Architecture. ACS Applied Bio Materials, 2019, 2, 3321-3328.	2.3	8
13	A NIR light-triggered drug delivery system using core–shell gold nanostars–mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chemical Communications, 2019, 55, 9039-9042.	2.2	27
14	Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. Journal of Materials Chemistry B, 2019, 7, 4669-4676.	2.9	13
15	Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano, 2019, 13, 12171-12183.	7.3	121
16	Janus Gold Nanostars–Mesoporous Silica Nanoparticles for NIR‣ightâ€Triggered Drug Delivery. Chemistry - A European Journal, 2019, 25, 8471-8478.	1.7	30
17	Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chemical Communications, 2019, 55, 5785-5788.	2.2	10
18	<scp>A l</scp> -glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Organic Chemistry Frontiers, 2019, 6, 1058-1063.	2.3	6

#	Article	IF	CITATIONS
19	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chemical Communications, 2019, 55, 13164-13167.	2.2	46
20	A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzymeâ€Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry - A European Journal, 2019, 25, 3575-3581.	1.7	11
21	Toward chemical communication between nanodevices. Nano Today, 2018, 18, 8-11.	6.2	15
22	Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 2018, 258, 829-835.	4.0	46
23	Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 2018, 10, 26494-26500.	4.0	19
24	Enzyme ontrolled Nanodevice for Acetylcholineâ€Triggered Cargo Delivery Based on Janus Au–Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 4276-4281.	1.7	27
25	Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 2017, 5, 3069-3083.	2.9	74
26	A new class of silica-supported chromo-fluorogenic chemosensors for anion recognition based on a selenourea scaffold. Chemical Communications, 2017, 53, 3729-3732.	2.2	27
27	Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 2017, 8, 15511.	5.8	96
28	Au–Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. Journal of Materials Chemistry B, 2017, 5, 6734-6739.	2.9	17
29	A Chalconeâ€Based Highly Selective and Sensitive Chromofluorogenic Probe for Trivalent Metal Cations. ChemPlusChem, 2015, 80, 800-804.	1.3	12