
Peter Lagov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5739928/publications.pdf Version: 2024-02-01

DETER LACOV

#	Article	IF	CITATIONS
1	Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si. APL Materials, 2018, 6, .	2.2	73
2	Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated Î ² -Ga2O3. Applied Physics Letters, 2018, 113, .	1.5	62
3	Point defects controlling non-radiative recombination in GaN blue light emitting diodes: Insights from radiation damage experiments. Journal of Applied Physics, 2017, 122, .	1.1	24
4	Pulsed fast reactor neutron irradiation effects in Si doped n-type β-Ga ₂ O ₃ . Journal Physics D: Applied Physics, 2020, 53, 274001.	1.3	22
5	Effects of InAlN underlayer on deep traps detected in near-UV InGaN/GaN single quantum well light-emitting diodes. Journal of Applied Physics, 2019, 126, .	1.1	21
6	Accelerator-based electron beam technologies for modification of bipolar semiconductor devices. Journal of Physics: Conference Series, 2016, 747, 012085.	0.3	13
7	Deep Electron and Hole Traps in Electron-Irradiated Green GaN/InGaN Light Emitting Diodes. ECS Journal of Solid State Science and Technology, 2017, 6, Q127-Q131.	0.9	13
8	Defect States Induced in GaN-Based Green Light Emitting Diodes by Electron Irradiation. ECS Journal of Solid State Science and Technology, 2018, 7, P323-P328.	0.9	13
9	Crystal orientation dependence of deep level spectra in proton irradiated bulk \hat{l}^2 -Ga2O3. Journal of Applied Physics, 2021, 130, .	1.1	12
10	Electron irradiation of nearâ€UV GaN/InGaN light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700372.	0.8	11
11	Investigation of structural and optical properties of MAPbBr ₃ monocrystals under fast electron irradiation. Journal of Materials Chemistry C, 2022, 10, 5821-5828.	2.7	11
12	Point defect creation by proton and carbon irradiation of α-Ga2O3. Journal of Applied Physics, 2022, 132,	1.1	11
13	1 GeV proton damage in β-Ga2O3. Journal of Applied Physics, 2021, 130, .	1.1	7
14	Magnetic Buncher Accelerator for Radiation Hardness Research and Pulse Detector Characterization. , 2015, , .		6
15	Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and without InAlN superlattice underlayer. Journal Physics D: Applied Physics, 2020, 53, 445111.	1.3	4
16	Nanosilicon stabilized with ligands: Effect of highâ€energy electron beam on luminescent properties. Surface and Interface Analysis, 2020, 52, 957-961.	0.8	4
17	Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing. Journal of Physics: Conference Series, 2017, 830, 012152.	0.3	3
18	Effect of Electron Irradiation on the Optical Properties of Gadolinium-Aluminum-Gallium Garnet Crystals. Journal of Surface Investigation, 2021, 15, 1259-1263.	0.1	3

Peter Lagov

#	Article	IF	CITATIONS
19	Particularities of Vanadium Microstructure Development During Irradiation by 7.5 MeV Ni2+ Ions at 650°C. Atomic Energy, 2015, 118, 400-404.	0.1	2
20	Laser ion source for semiconductor applications. Journal of Physics: Conference Series, 2022, 2244, 012096.	0.3	2
21	Development of Gas Porosity along the Ion Range in Vanadium Alloys during Sequential Helium and Hydrogen Ion Irradiation. Russian Metallurgy (Metally), 2019, 2019, 1161-1166.	0.1	1
22	Radiation effect on the polymer-based capacitive relative humidity sensors. Nuclear Engineering and Technology, 2022, , .	1.1	1
23	Features of Gas Porosity Formation Along Helium Ion Trajectories in Vanadium Alloys. Atomic Energy, 2019, 126, 46-51.	0.1	0
24	Detection of Unreliable Superluminescent Diode Chips Using Gamma-Irradiation. Lecture Notes in Mechanical Engineering, 2019, , 309-317.	0.3	0
25	Comparison of the Helium Porosity Parameters in Vanadium Alloy TEM Samples Prepared by Various Techniques. Russian Metallurgy (Metally), 2020, 2020, 206-211.	0.1	0
26	HIGH-RATE HIGH-DENSITY ICP ETCHING OF GERMANIUM. High Temperature Material Processes, 2019, 23, 57-70.	0.2	0